Efficient In-Memory Computing Circuits and System for AI with Hardware and Algorithm Co-Design

Deliang Fan

Director of *Efficient, Secure and Intelligent Computing* (ESIC) Laboratory School of Electrical, Computer and Energy Engineering Arizona State University, Tempe, AZ, USA

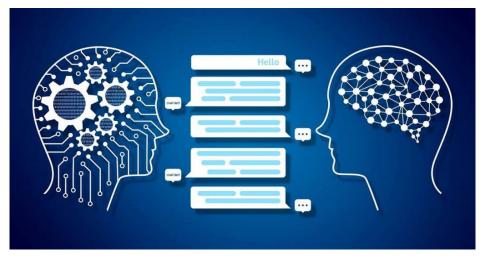
Email: dfan@asu.edu

https://faculty.engineering.asu.edu/dfan/

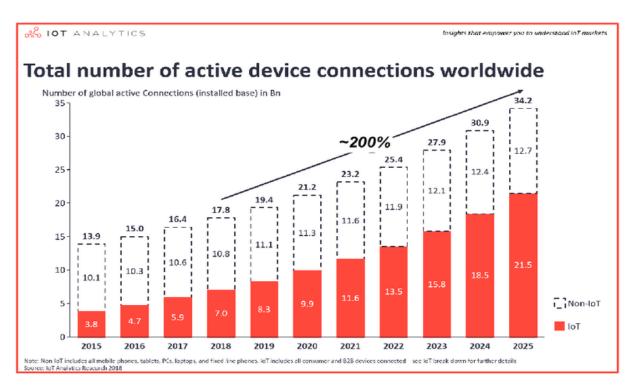
Contributing Ph.D. Students

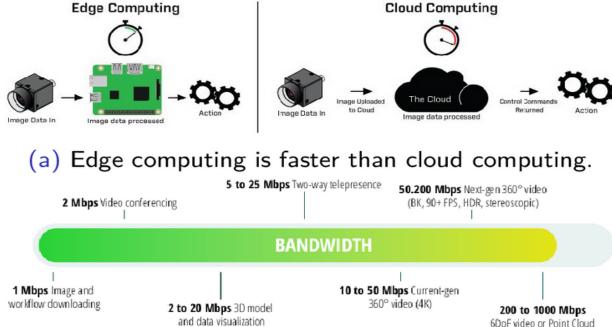
Zhezhi He (Asso. prof. / Shanghai Jiaotong U.); Shaahin Angizi (TT-AP/ NJIT); Adnan Rakin (TT-AP/ Binghamton U.); Li Yang (TT-AP/ UNC Charlotte), Fan Zhang (Google), Amitesh Sridharan, Yongjae Lee, Zhaoliang Zhang, Juyang Bai, Asmer, Jingxing, etc.

Success of Deep Learning



Motivation of Edge Computing





(b) Crowed Bandwidth by content-size and #devices.

Figure: Inference on edge for latency and bandwidth

- #edge devices (IoT/Non-IoT) will be approximately doubled in 5 years.
- Performing DNN inference on edge is becoming more preferable:
 - Reduce inference latency
 - Enhance user privacy

- Avoid bandwidth competition.
 - \$ Cut Long-term cloud computing bill

Concerns of DNN Deployment on Edge devices

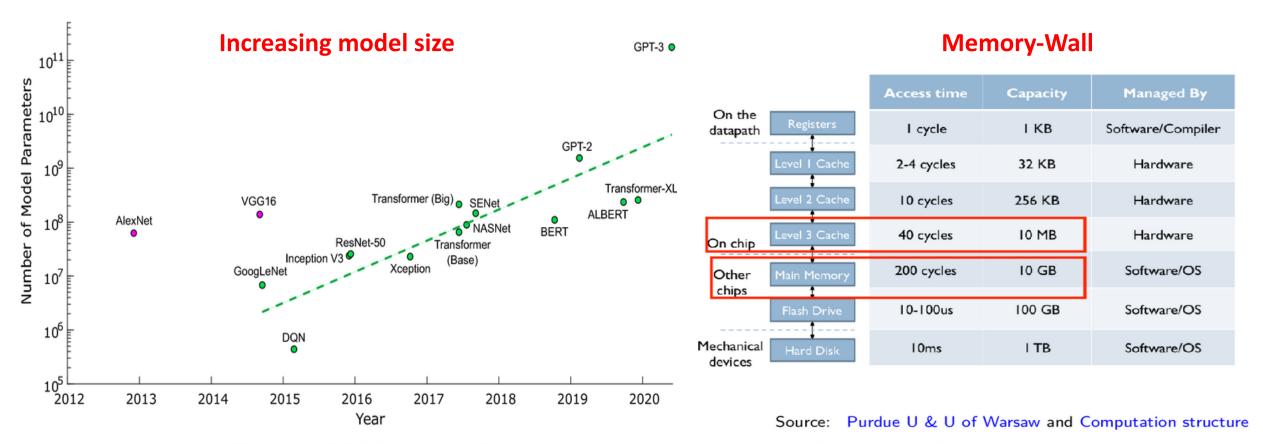


Figure: DNN trend of accuracy vs. model size and memory hierarchy.

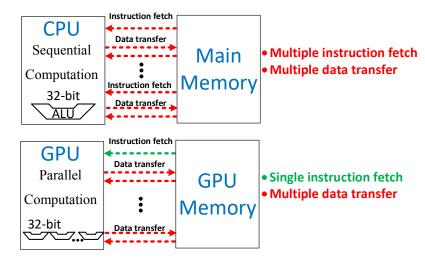
Bernstein, Liane, et. al. Scientific reports 11, no. 1 (2021): 3144.

- DNNs with higher accuracy requires larger model size & higher computing workload.
- Large model normally cannot fit into on-chip cache.
- Cache the model in Off-chip DRAM with expensive long-distance memory access.

Energy Efficient In-Memory Computing

Memory Wall

Von-Neumann Architecture



Multiplication: 3.1pJ Addition: 0.1pJ

On-chip cache:

Energy: ~5pJ

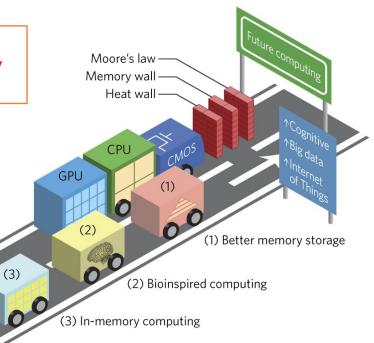
Latency: ~10ns

Off-chip memory:

Energy: ~640pJ Latency: ~100ns

- Energy hungry data transfer
- Long memory access latency
- Limited memory bandwidth

Moving a floating point number from main memory to CPU takes two orders more energy than processing in CPU

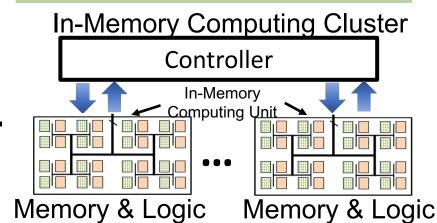


Processing-in-Memory Architecture

Von-Neumann architecture Controller Memory

Logic

VS.



- Parallel, local data processing
- Short memory access latency
- Ultra-low energy
- Programmable, Low cost

Co-Design

Dr. Fan: Efficient, Secure, and Intelligent Computing (ESIC) Laboratory

Al Performance & Efficiency

Compute- and Memory-efficient on-device learning NeurIPS'22/23, CVPR'22/21, AAAI'22(spotlight), ICLR'22(spotlight), etc.

Hardware-aware AI model optimization CVPR'19, WACV'19, AAAI'20 (spotlight), TNNLS'20

Run-time dynamic neural network

TNNLS'22, NeurIPS'22, DAC'20

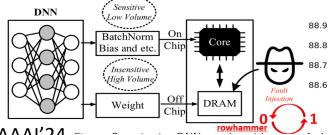
AI Security & Privacy

Adversarial noise robustness CVPR'19, CVOPS'19

Adversarial Weight Attack & Defense ICCV'19, CVPR'20, DAC'20, DATE'21, etc.

Al Trojan Attack CVPR'20, TPAMI'21

Model inversion

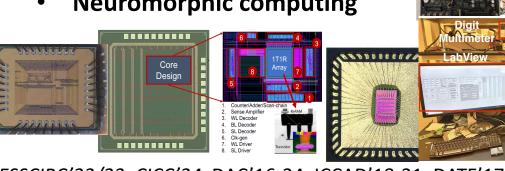


HOST'21, CVPR'22, SP'22, AAAI'24

In-memory computing chips

Emerging non-volatile memory

Neuromorphic computing



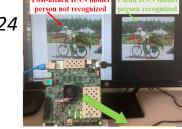
ESSCIRC'22/23, CICC'24, DAC'16-24, ICCAD'18-21, DATE'17-23, DRC'19, JSSC, SSCL, OJSSCS, TCAS-I/II, TMAG, TC, TNANO, TCAD, EDL, etc.

Memory Bit-Flip Attack in Computer main memory USENIX Security'20

Fault injection into the data communication in cloud-FPGA in black-box setup

USENIX Security'21, Security & Privacy (SP)'24

Al Model/Data Stealing from memory side-channel IEEE-Security & Privacy (SP) – 2022



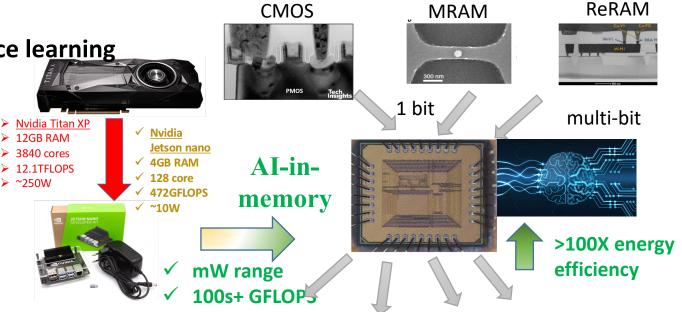
Part-I: Efficient AI Computing-in-Memory

Al Performance & Efficiency

 Compute- and Memory-efficient on-device learning (continual learning, self-supervised, etc.)

NeurIPS'22/23, CVPR'22/21, AAAI'22, ICLR'22, etc.

- Hardware-aware Al model optimization
 CVPR'19, WACV'19, AAAI'20 (spotlight), TNNLS'20
- Run-time dynamic neural network TNNLS'22, NeurIPS'22, DAC'20



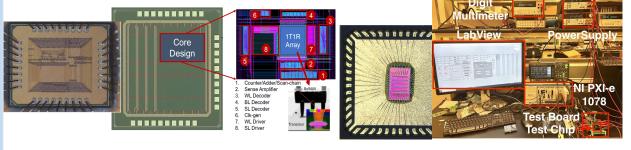
Smart

Co-Design

In-memory computing chips

Emerging non-volatile memory

Neuromorphic computing



ESSCIRC'22/23, CICC'24, DAC'16-24, ICCAD'18-21, DATE'17-23, DRC'19, JSSC, SSCL, OJSSCS, TCAS-I/II, TMAG, TC, TNANO, TCAD, EDL, etc.

loT loT learning

Federated

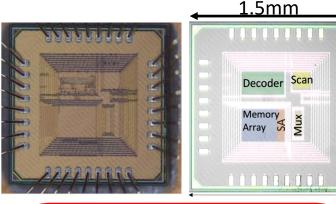
Smart health

Objective: low power, high performance computing, reliable, smaller AI model, learning-on-device, secure, trustworthy, and more...

Research projects funded by NSF FuSe, ACED, SHF, CPS, FET, Satc, Career, DARPA, IARPA, SRC, etc.

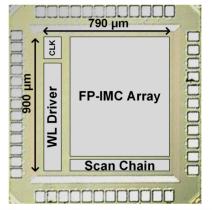
Our Developed IMC Chip Prototypes (examples): SRAM and NVM

- A 1.23-GHz 16-kb Programmable and Generic Processing-in-SRAM Accelerator in TSMC 65nm
- Published in ESSCIRC'2022



- All-Digital Configurable Floating-Point In-Memory Computing Macro in TSMC 28nm
- Published in ESSCIRC'2023

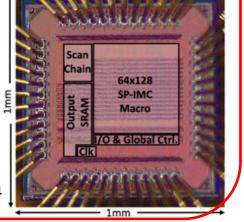
.44mm



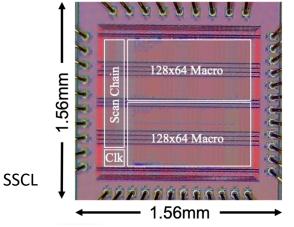
- 28 nm IMC chip prototype for sparse in-memory matrix convolution
- Supports N:M structured sparsity, run length encoding, compressed sparsity
- column

 Sparse NN
- Wireless
 Decoder
 (Neural BP)

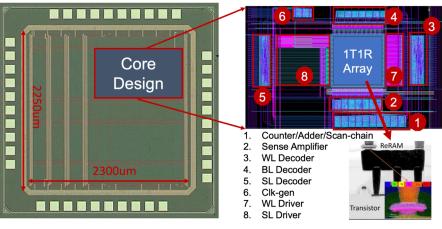
DAC'23 CICC'24



A 28nm 2385.7 TOPS/W/b Precision
Scalable In-Memory Computing Macro
with Bit-Parallel Inputs and
Decomposable Weights for DNNs

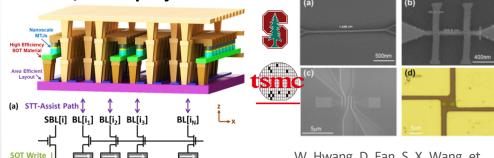


- hybrid 65nm CMOS-ReRAM (HfO2) designs for DNN acceleration and DNA genome sequence alignment applications.
- 64 by 64 HfO2 RRAM and SRAM module for hybrid computing



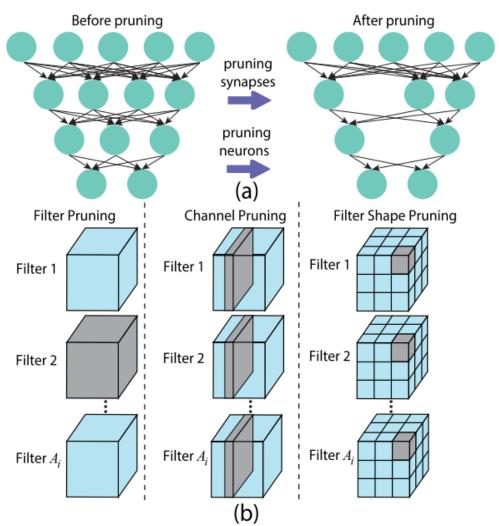
ESSCIRC'23, invited to extend to JSSC special issue

energy efficient IMC with high-density, field-free STT-assisted SOT-MRAM (SAS-MRAM), ~100nm, NSFFuSe/ACED projects

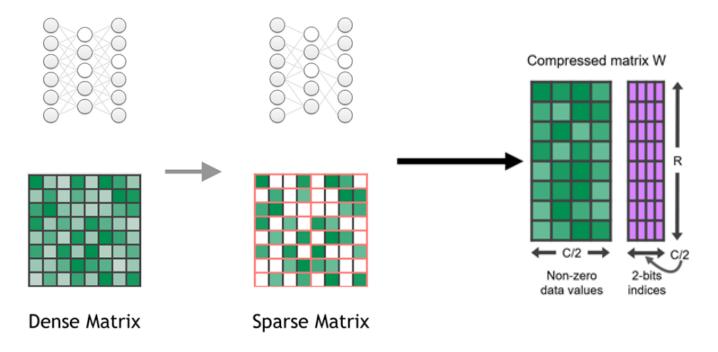


W. Hwang, D. Fan S. X. Wang, et., al., TMAG, 2022

Sparse Neural Network through Pruning



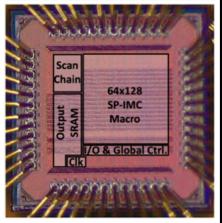
Unstructured and **Structured** NN Pruning
Significantly reduce model size with no accuracy drop



- nVidia GPU beyond Ampere architecture supports N:M structured sparse matrix processing.
- 2:4 sparsity in A100 GPU, 2X peak performance, 1.5 X measured BERT speedup in real system, no accuracy degradation
- Sparse-encoded matrix processing (without decoding) is needed for IMC

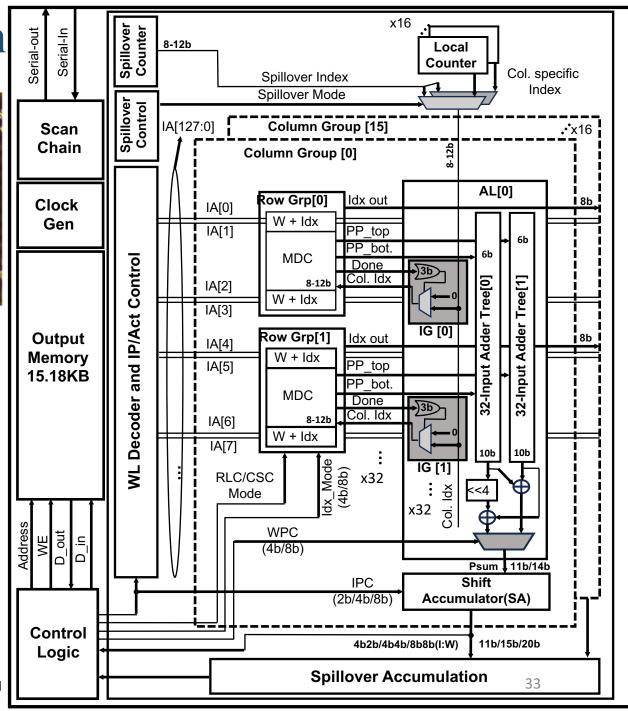
Sparse(SP)-IMC Macro Design

- 64x64 bits for weights, 64x64 bits for indices.
- 16 compute **column groups**.
- Each column group has 32 row groups and one accumulation logic (AL) module.

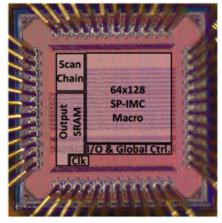


- Each Row Group could generate two partial products (PP_top, PP_bot.), sending to accumulation logic module (i.e., adder trees) to accumulate in a 'semi-bit-serial' pattern, for MAC operation
- Each column group generated partial-sum will be sent to shared shift-accumulator for nextstage accumulation

Amitesh Sridharan, Fan Zhang, Jae-sun Seo, Deliang Fan, "SP-IMC: A Sparsity Aware In-Memory-Computing Macro in 28nm CMOS with Configurable Sparse Representation for Highly Sparse DNN Workloads," *IEEE Custom Integrated Circuits Conference (CICC)*, 2024.

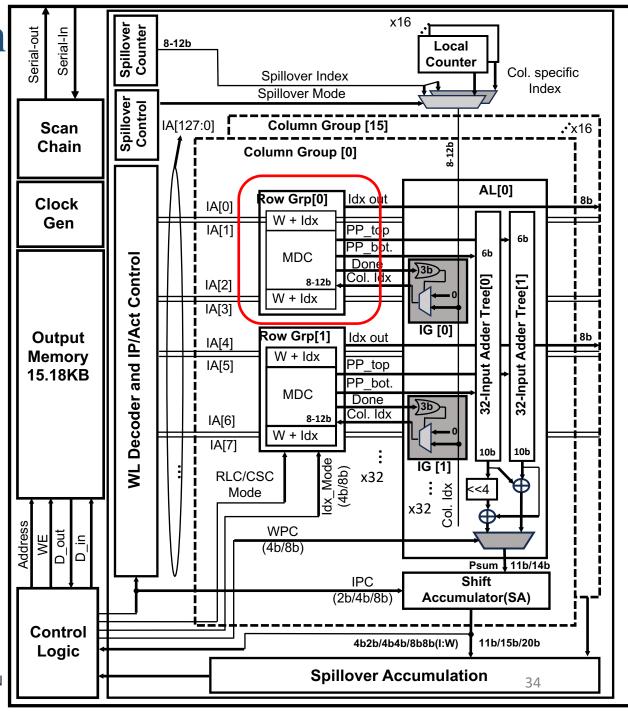


Sparse(SP)-IMC Macro Design

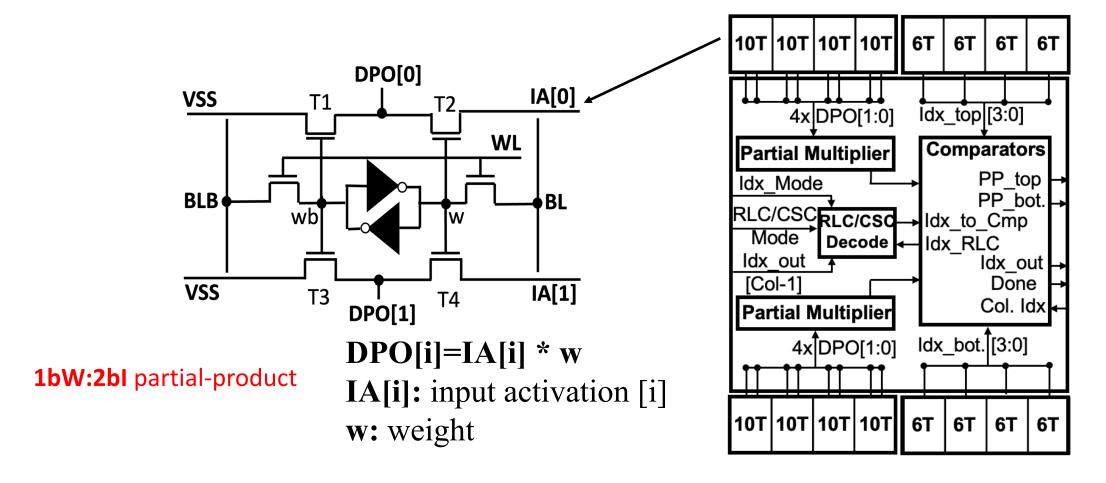


- SP-IMC supports different sparse encoding schemes: Compressed Sparse Column (CSC), Run Length Encoding (RLE)
- un-structured or **N:M** structured sparsity, with varying index/zero counts from 4 8 bit.
- Sparse processing circuits in each row group

Amitesh Sridharan, Fan Zhang, Jae-sun Seo, Deliang Fan, "SP-IMC: A Sparsity Aware In-Memory-Computing Macro in 28nm CMOS with Configurable Sparse Representation for Highly Sparse DNN Workloads," *IEEE Custom Integrated Circuits Conference (CICC)*, 2024.



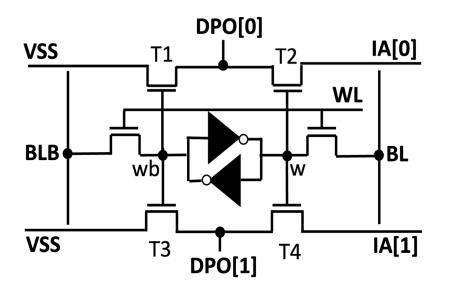
Compute Row Group: In-Memory Logic Design

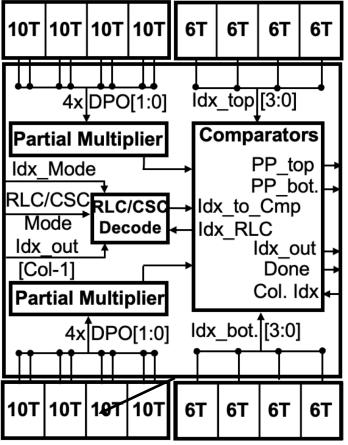


- Each row group: 8-bits for weight, 8-bits for index.
- In-memory partial product: 10T **Dual AND** bit-cell design for **1bW:2bI** dot-products, with DPO[0:1] as 2 bit-parallel partial product outputs.

Compute Row Group: In-Memory Logic Design

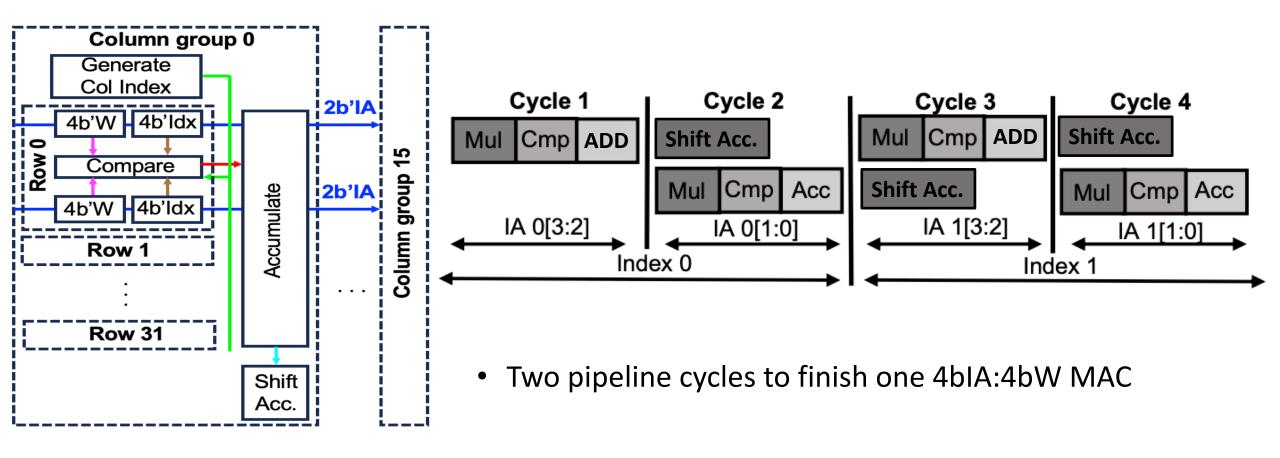
1bW:2bl partial-product



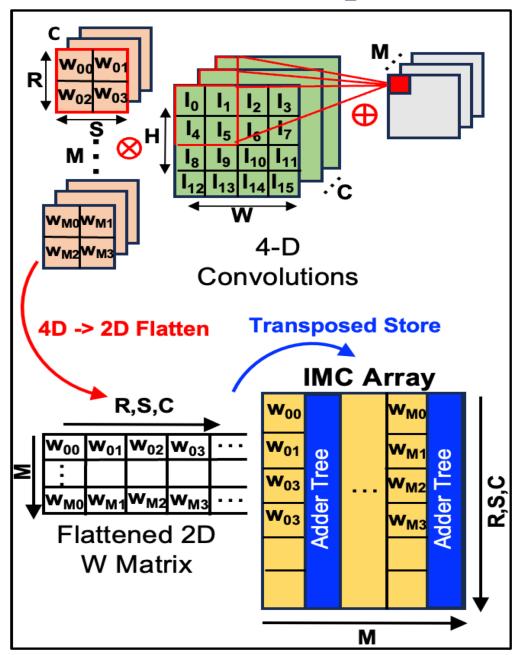


- SP-IMC can be **reconfigured** to select 2 4-bit indices or a single 8-bit index depending on sparsity pattern and weight resolution.
- Each row group has a Multiply, Decode, and Compare logics
- MDC takes the dot-products from associated bit-cells, takes indices pertaining to the column and individual weight, and sends out the partial product if the comparison is successful.

Pipeline Diagram of SP-IMC in 4b-IA:4b-W Mode

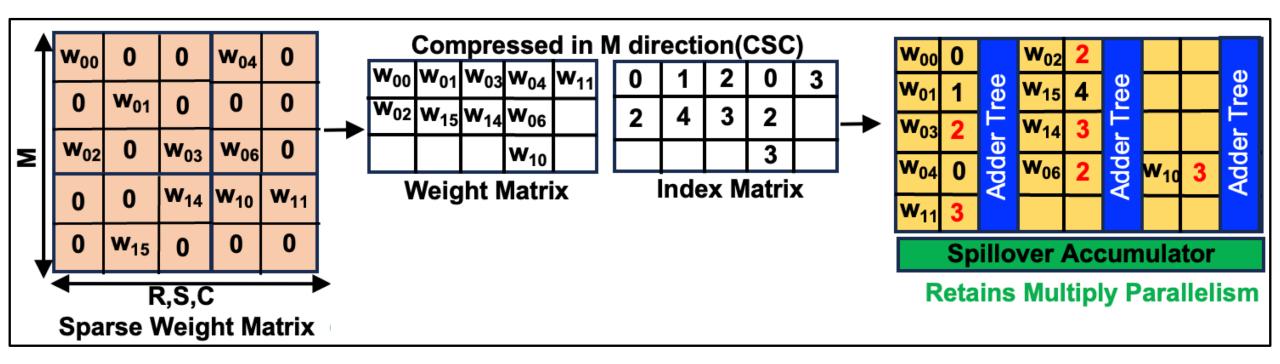


Uncompressed Convolution Mapping to IMC



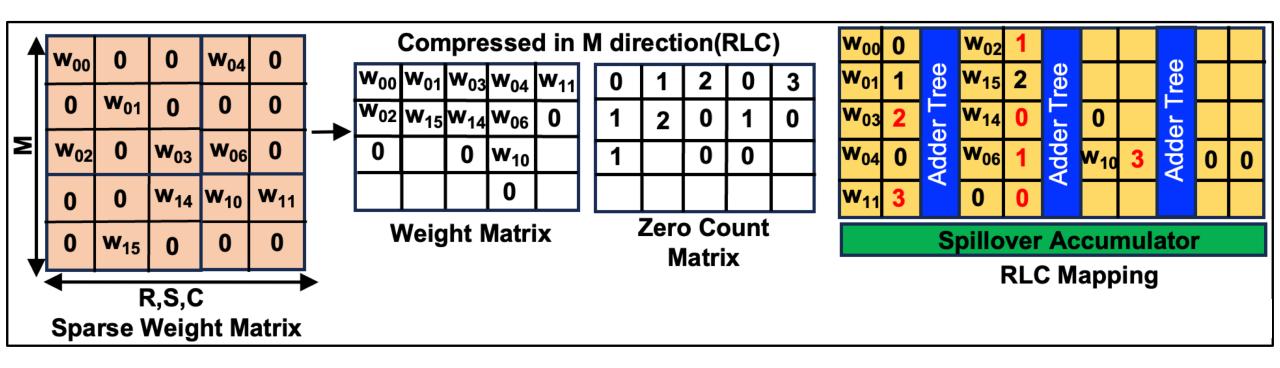
- Uncompressed mapping for convolutions is done by flattening the 4D kernels to a 2D weight matrix
- Then it is transposed and stored onto the IMC array such that the kernel dimensions and input channel (R, S, C) fall into columns with adder trees
- The output channel is mapped in the row direction
- Such mapping is widely used in IMC to support parallel multiplications and improve MAC throughput.

CSC Compression and Mapping



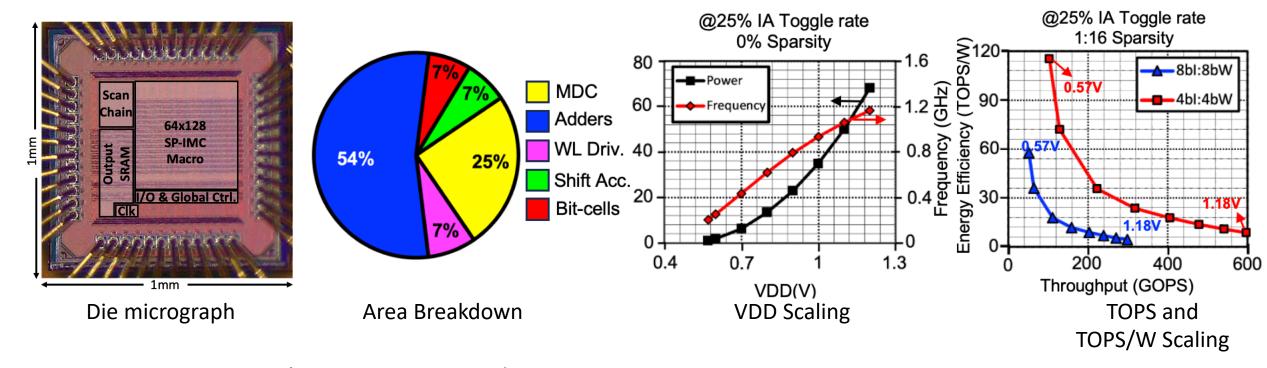
- Compressed mapping retains the same structure as un-compressed mapping, R,S,C in column direction and M in row-direction to support parallel multiplication.
- CSC breaks accumulation parallelism and retains multiplication parallelism, as suitable for IMCs with shared multiplications.
- N:M structured pruning is preferred to maximize storage efficiency

RLC Compression and Mapping



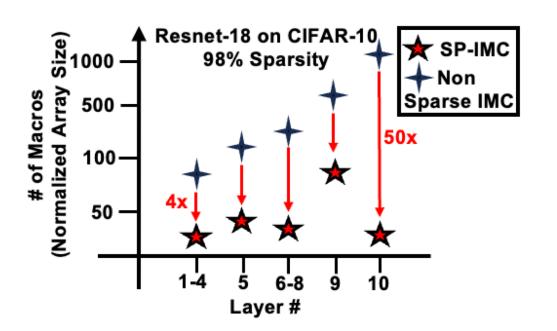
- Compressed mapping retains the same structure as un-compressed mapping, R,S,C in column direction and M in row-direction to support parallel multiplication.
- RLC follows same mapping as CSC, but zero count of elements before the non-zero is stored
- N:M structured pruning is preferred to maximize storage efficiency

Chip Measurement and Performance

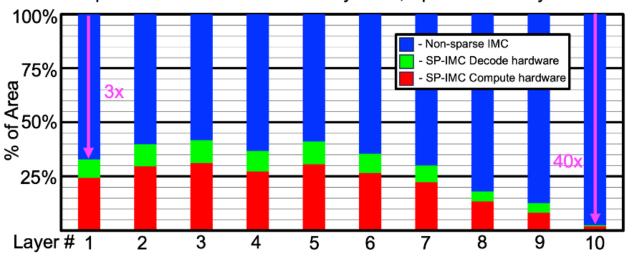


- SP-IMC prototype chip is prototyped using 28nm TSMC CMOS.
- The chips are measured at 25°C, 25% IA toggle rate between 1.18V and 0.57V.
- The prototype chip achieves a maximum of 1.16GHz at 1.18V consuming 72mW of power.
- Due to its all-digital nature, it shows good scaling, down to 0.57V VDD maintaining an F_{max} of 201 MHz consuming only 3.6mW of power.

Benefits of Sparse Storage and Processing-in-Memory



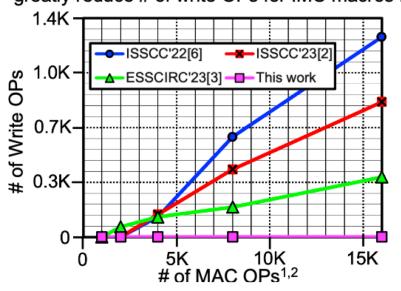
Resnet-18, on CIFAR-10, 98% Unstructured sparsity mapped to SP-IMC with RLC Compression. INT8 Dense accuracy: 87%, Sparse accuracy: 86.2%

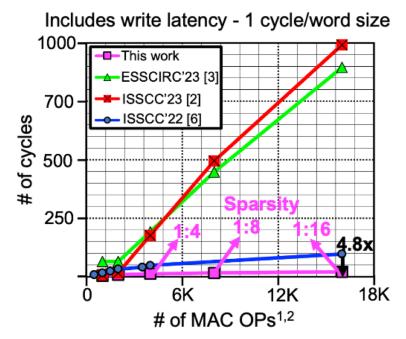


- Due to sparse-storage and sparse-processing, SP-IMC could process larger DNN model with less hardware cost (e.g. less Macros, less memory, less power, etc.)
- # of SP-IMC vs non-SP-IMC macros required to map a pruned Resnet-18 trained on CIFAR-10 will be significantly reduced by more than 10X.

Comparison with prior works (1 of 2)

Aided by compressed sparse storage, SP-IMC can greatly reduce # of write OPs for IMC macros .







- Due to sparse encoding, SP-IMC could store more weights/kb.
- In the system level, this translates to the reduction of writes operations to IMC, as we scale the number of MAC operations.
- Less processing latency could also be achieved with directly processing sparse-encoded weights
- Highest FoM considering Energy efficiency * area efficiency * weights/Kb

Comparison with prior works (2 of 2)

Work	ISSCC'22 [1]	ISSCC' 23 [4]	ISSCC'22 [6]	ISSCC'23 [2]	ESSCIRC'23 [3]	This Work
Technology	28nm	28nm	5nm	4nm	28nm	28nm
IMC Sparsity Support	X	X	X	X	Χ	RLC/CSC/N:M
Supply Voltage (V)	0.45-1.10	0.64-1.03	0.5-0.9	0.32-1.1	0.9-1.1	0.57-1.18
Macro Area (mm²)	0.049	NA	0.0133	0.0172	0.0159	0.24
Clock Frequency (MHz)	250	20-320	360-1440	1490	30-360	201-1160
Bitcell Transistors	8T	8T(55%) 10T(45%)	12T	8T x 2bit +OAI	6T+0.5T	6T+4T(50%) 6T(50%)
Array Size(b)	16K	1.15M	64K	54K	16K	4K(Weights) + 4K(Index)
Bit Precision	IA:1-4b W:1b	INT8	IA: 1-8b W:4b	IA: 8/12/16 W: 8/12	IA: 1-8 W: 8	IP:2b/4b/8b W:4b/8b
Full output precision	No	Yes	Yes	Yes	Yes	Yes
Performance(GOPS) ^{1,2,7}	62.5*	22.9*	104.735	127.15	0.95-11.6	41.29-238.86 ⁶
Peak Energy Efficiency ^{2,7} (TOPS/W)	9.6-15.5	15.6 ⁴ /70.37 ⁵ (System)	17.5-63	87.4 ⁽⁸⁾ 41.3 ⁽⁹⁾	22.4-60.4	4.38-57.67 ⁶
Compute Density ^{2,3,7} TOPS/mm ²	2.59	0.85	0.44-1.76	0.27-1.01	0.12-1.46	0.21-1.2 ⁷
FoM	3.182K	2.97K⁴ 3.25K⁵	3.942K	3.219K	0.9K-4.1K	11K-24K(1:16) 5.5K-12K(1:8)

⁽¹⁾ Normalized to 8Kb. (2) One operation is either 8b multiplication or addition. (3) Normalized quadratically to 28nm. *Estimated from previous works. (4) 75% Sparsity, (5) 92% Sparsity. (6) 93.75% Sparsity (1:16 Sparsity).

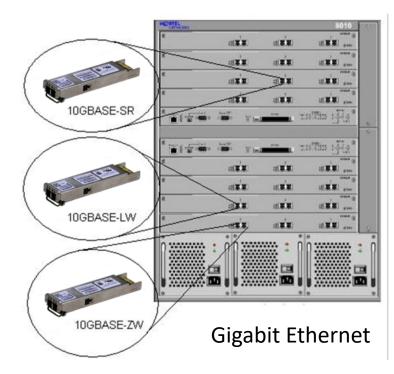
GOPS Calculation: 32(Rows) x 16(Columns)/Latency(5xClk period). ⁽⁷⁾Excludes write energy/latency otherwise incurred by other works for a scaled-up matrix that fits in SP-IMC and not in other works. ⁽⁸⁾ @ 12.5% TR. ⁽⁹⁾ @ 50% TR ⁽¹⁰⁾ @25% TR.

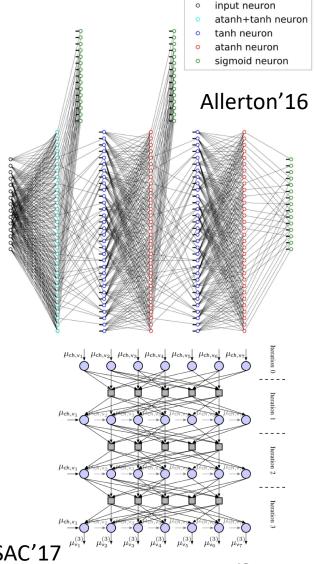
- Best Performance (GOPS)
- SoTA Energy Efficiency
- Best FoM

FoM = TOPS/W⁽⁷⁾ * TOPS/mm² (7) * # of W/kb

Sparse Matrix Multiplication for Communication Application:

Neural Belief-Propagation (BP) Decoder





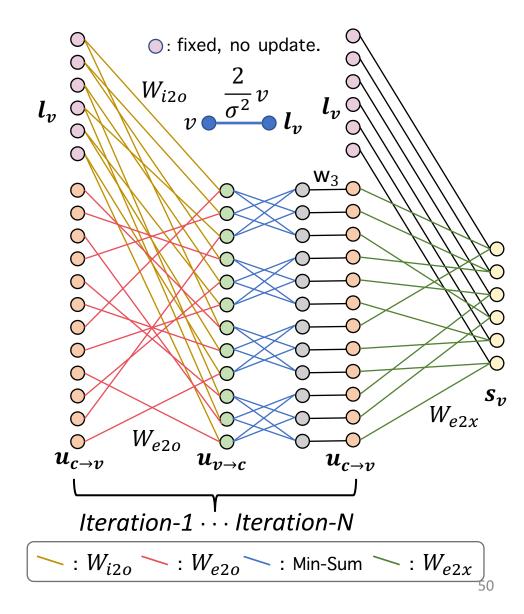
Sparse Matrix Multiplication for Communication Application: Neural Belief-Propagation (BP) Decoder

- Step 1: $u_{v\rightarrow c}^t = \mathbf{W}_{i2o} \times l_v + \mathbf{W}_{e2o} \times u_{c\rightarrow v}^{t-1}$
 - \circ Structured Sparse MVM $\mathbf{W}_{i2o} \times l_v$
 - ullet Unstructured Sparse MVM -- $\mathbf{W}_{e2o} imes u_{c o v}^{t-1}$
- Step 2 & 3: Min-Sum and Dot-Product Compute. $u_{c \to v}^t = w_{c \to v} \times \min_{v' \in M(c) \setminus v} |u_{v' \to c}^t| \prod_{v' \in M(c) \setminus v} \operatorname{sign}(u_{v' \to c}^t),$

$$u_{c1\to v1} = w \times sign(u_{v2\to c1}) \times sign(u_{v4\to c1}) \times min(|u_{v2\to c1}|, |u_{v4\to c1}|)$$

$$Iteration-1$$

- Step 4: S_v Calculation $s_v^t = l_v + W_{e2x} \times u_{c \to v}^t$,
 - Performed only once for the last iteration.



Performance Evaluation

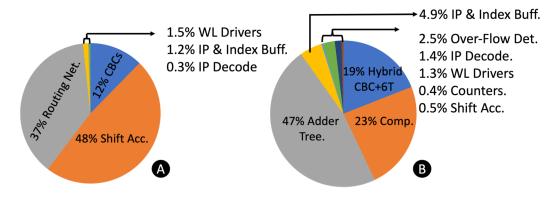
GWCL ALGORITHM MEMORY BENEFITS (EXCLUDES INDEX MEMORY)

Code Length/	121		672		1056	
Weight Memory	Uncompressed	GWCL algorithm	Uncompressed	GWCL algorithm	Uncompressed	GWCL algorithm
W_1	73.2KB	0.6KB	1.5MB	2.2KB	3.7MB	3.52KB
W_2	366KB	2.4KB	5MB	5.5KB	12.3MB	8.7KB
W_3	366KB	N/A	4.9MB	N/A	12.3MB	N/A
W_4	73.2KB	0.6KB	1.5MB	2.2KB	3.7MB	3.52KB

Significant memory saving due to sparse encoding & processing, the sparsity ratio is very high in Neural BP

POWER BREAKDOWN

SSP-Matrix Mer	n(256x256)	USP-Matrix Mem(128x256)		
Hardware	Power (mW)	Hardware	Power(mW)	
Bit-Cell array(8T)	11.6mW	Bit-cell array(6T+8T)	4.2mW	
Shift Accumulator	46.73mW	Comparator	21.3mW	
Routing Network	R+C Parasitics	Adder Tree	18.7mW	
IP Index+IP Buff.	6.3mW	Ip Index + Ip Buff.	4.22mW	
Decoder	0.88mW	Shift Accumulator	6.74mW	
Ip Decode	1.3mW	Overflow + Counters	4.63mW	
Total	66.81mW	Total	59.79mW	



(A) Area Breakdown of SSP-MVM (B) Area Breakdown of USP-MVM

- The majority operations in Neural BP is sparse matrix multiplication
- Our designed SP-IMC could significantly reduce the model size, thus chip area and power consumption

Amitesh Sridharan, Fan Zhang, Yang Sui, Bo Yuan and Deliang Fan, "DSPIMM: Digital Sparse In-Memory matrix vector multiplier for Communication Applications" In: 59th Design Automation Conference (DAC), San Francisco, CA, July 9-13, 2023

Comparison with SOTA

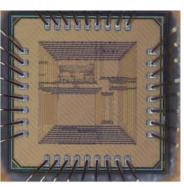
COMPARISON WITH PRIOR LDPC IMPLEMENTATIONS

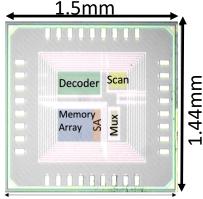
	This Work	TCAS'21 [15]	VLSI'18 [16]
Code Length	1056	1027	2048
Core Area	1.32mm^2	2.24mm^2	16.2mm^2
Frequency	783Mhz	1000Mhz	862Mhz
Throughput	224Gb/s @4it	833Gb/s@4it	588Gb/s@5it
Area Efficiency	169.7Gb/s/mm ²	371.9Gb/s/mm ²	36.3Gb/s/mm ²
Energy Efficiency	1374.2Gb/s/W	109.605Gb/s/W	44.21Gb/s/W
Latency	57.465ns@4it	38ns@4it	69.6@5it
Power	0.163W	7.6W	13.3W
Node	28nm	16nm	28nm
Algorithm	neural-BP	Layered	Finite Alphabet

• Compared with non-IMC ASIC implementation of Channel decoder, ~10X higher energy efficiency could be achieved

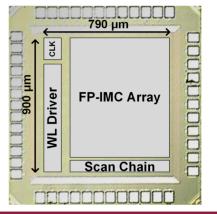
Our Developed IMC Chip Prototypes (examples): SRAM and NVM

- A 1.23-GHz 16-kb **Programmable** and Generic Processing-in-SRAM Accelerator in TSMC 65nm
- Published in ESSCIRC'2022

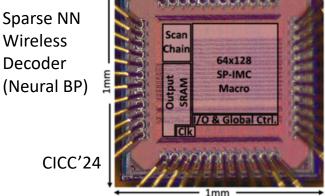




- All-Digital Configurable Floating-**Point** In-Memory Computing Macro in TSMC 28nm
- Published in ESSCIRC'2023

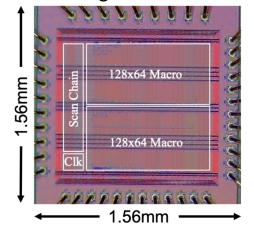


- 28 nm IMC chip prototype for sparse in-memory matrix convolution
- Supports N:M structured sparsity, run length encoding, compressed sparsity
- column
- Wireless Decoder (Neural BP)

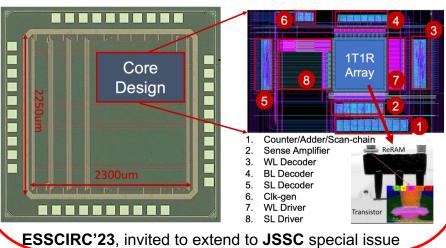


A 28nm 2385.7 TOPS/W/b Precision **Scalable** In-Memory Computing Macro with Bit-Parallel Inputs and **Decomposable Weights for DNNs**

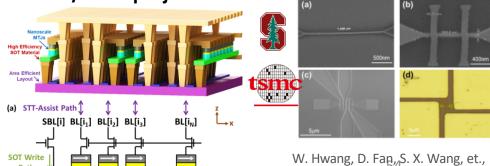
SSCL



- hybrid 65nm CMOS-ReRAM (HfO2) designs for DNN acceleration and **DNA genome sequence alignment** applications.
- 64 by 64 HfO2 RRAM and SRAM module for hybrid computing

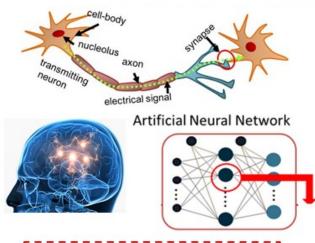


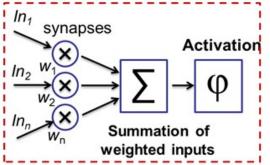
energy efficient IMC with high-density, field-free STTassisted SOT-MRAM (SAS-MRAM), ~100nm, NSF **FuSe/ACED** projects

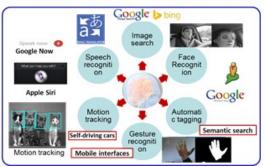


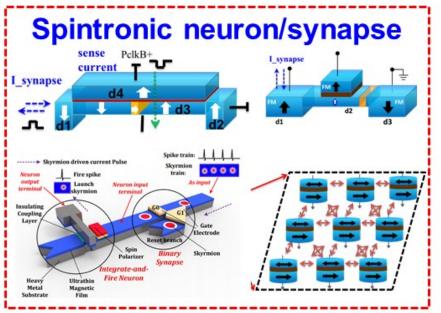
al., TMAG, 2022

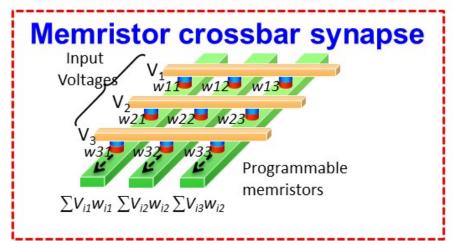
Analog: Neuromorphic Computing-in-Memory Devices & Circuits

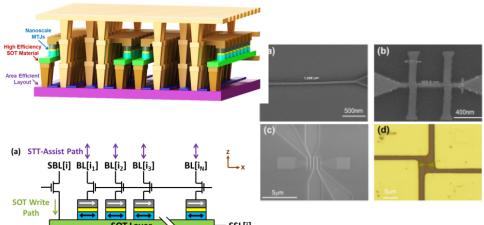


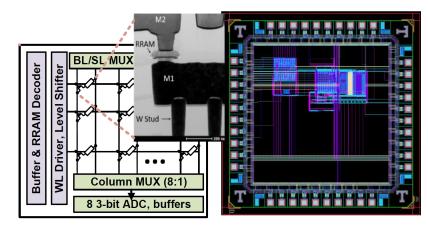




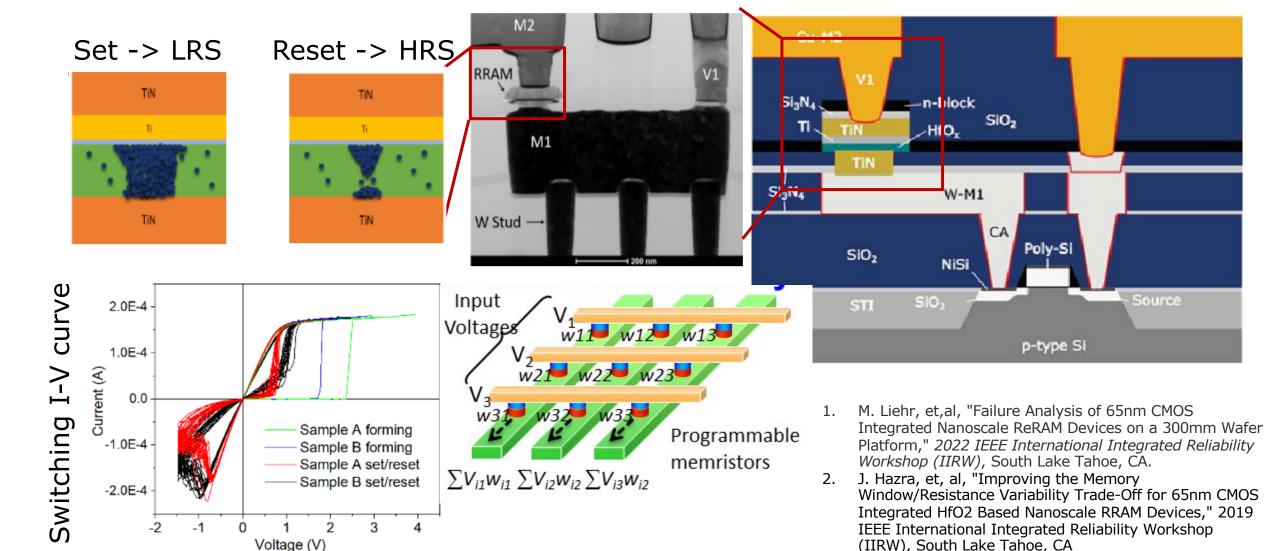








Resistive RAM Crossbar



- * sample A: deposited thin layer of 6 nm HfO2 switching layer via atomic layer deposition using a chlorine-based precursor
- sample B: using an organic carbon-based precursor.

Crossbar based In-Memory Computing device & circuits

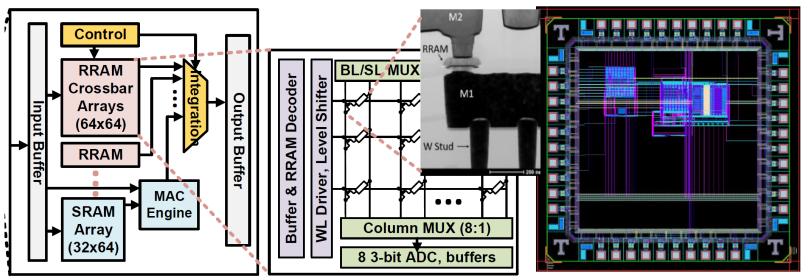
Why RRAM crossbar?

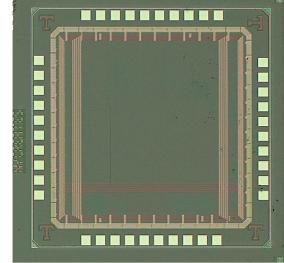
Pros: 1) O(1) convolution; **2)** multi-bit cell; **3)** mature technology demonstrated in 22nm chip by TSMC, etc. **4)** Non-volatility; **5)** area **Cons:** large write power/voltage, slow write, endurance, variation, non-ideal effect, unreliable, etc.

What we have developed to address those issues from <u>co-design</u> perspective.

- 1. Aggressive low bit width model compression (CVPR'19, DAC'17-22)
- 2. Crossbar-aware pruning, etc. (AAAI 2020, etc.)
- 3. Noise-aware and hardware non-ideality aware training (CVPR 2019, DAC'19/'20, TCAD'22, VLSI-TSA'22, etc.)
- 4. Crossbar–aware on-device learning/tuning methodology (DATE'22 (best IP paper), DAC'22 (best paper candidate nomination of the track), Frontier in Electronics, etc.) Will discuss in later algorithm session

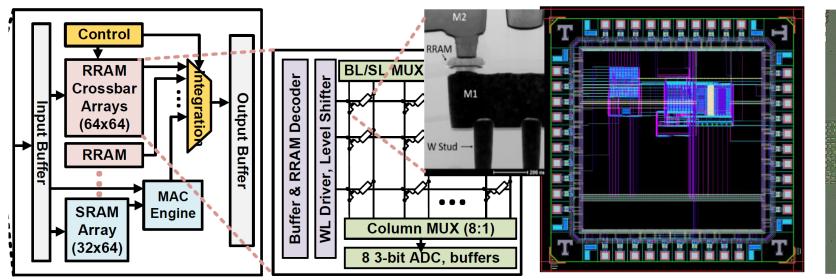
Hardware perspective: Developed hybrid RRAM-SRAM In-Memory Computing (RS-IMC) chip

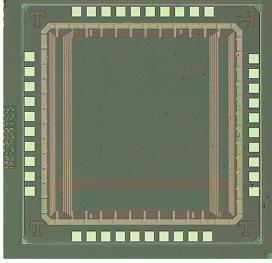




Crossbar based In-Memory Computing device & circuits

Developed hybrid RRAM-SRAM In-Memory Computing (RS-IMC) chip





RRAM-SRAM hybrid **prototype chip** with one 64×64 1T1R RRAM array (3-bit ADC) and one 32×64 SRAM array, and other peripheral circuits, with both RRAM crossbar and digital SRAM neuron module for hybrid computing

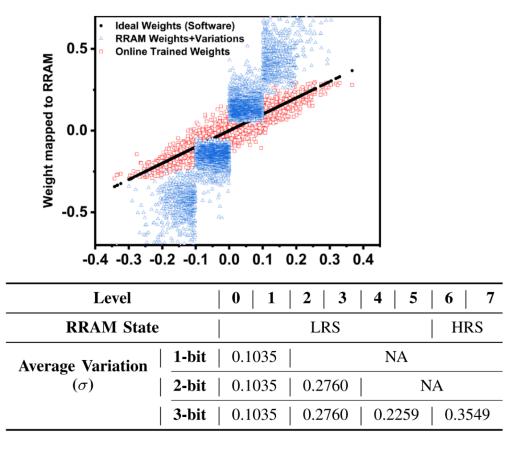
- The chip design was fabricated by SUNY Poly's Albany Nanotech Complex (collaborating with Prof. Cady and Cao) at 65nm technology
- Hybrid learning methodology with hybrid design (large RRAM and small SRAM parameters, introduce later)

RRAM Pros: 1) O(1) convolution; 2) multi-bit cell; 3) mature NVM technology in 22nm chip by TSMC, etc. 4) Non-volatility 5) area **RRAM Cons:** large write power/voltage, slow write, endurance, variation, non-ideal effect, unreliable, etc.

SRAM Pros: 1) fast & easy to write; 2) unlimited endurance; 3) very mature technology with high reliability.

SRAM Cons: small capacity, large leakage, large area, volatile,

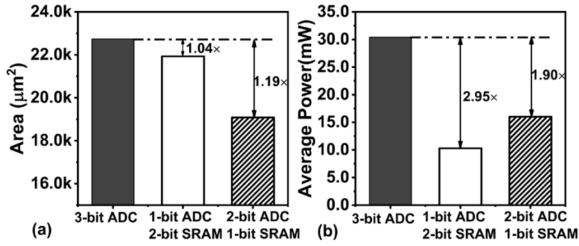
Digital-Assist Analog IMC: Accurate and Efficient Computing



We developed Variation-Aware Training based on a method called **Noise Injection Adaption**, where model different types of RRAM non-ideal effects as weight noise during neural network training.

D. Fan., et. al. "Noise Injection Adaption: End-to-End ReRAM Crossbar Non-ideal Effect Adaption for Neural Network Mapping", DAC, 2019

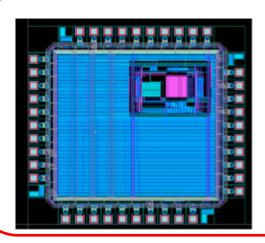
Network	RRAM Precision	ADC Precision	SRAM Precision	Accuracy (VAT)
ResNet-20	Baselin 3-bit RRA	89.45%		
	3-bit	1-bit	1-bit	84.08%
			2-bit	88.71%
			3-bit	89.06%
		2-bit	1-bit	91.15%
			2-bit	91.58%
			3-bit	91.50%



- Accurate Digital Module could improve system accuracy due to device variation
- It could also reduce the resolution of power-dominating ADC, thus reducing system power consumption

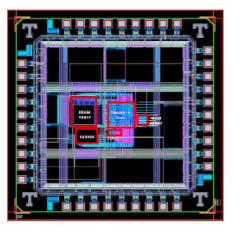
[1] G. Krishnan, et. al. "Hybrid RRAM/SRAM In-Memory Computing for Robust DNN Acceleration," TCAD [2] Z. Wang, et. al. "Digital-Assisted Analog In-Memory Computing with RRAM Devices", VLSI-TSA, 2023

Multiple 65nm Hybrid CMOS/RRAM(HfO2) Chips Testing-in-Progress



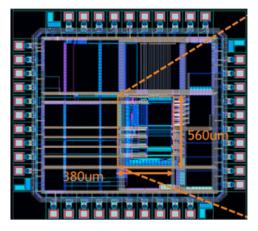
RRAM IMC array with CMOS periphery for genome sequencing alignment

ESSCIRC'23, invited to extend to **JSSC** special issue



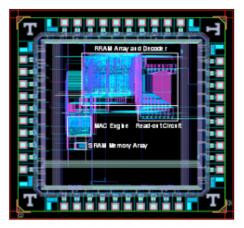
Hybrid training, with the RRAM array for MSB of back propagation, and SRAM for LSB

Chip testing in progress



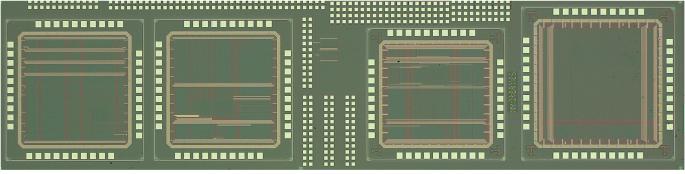
Multi-bit RRAM IMC macro with half-range shifted weight encoding

Chip testing in progress



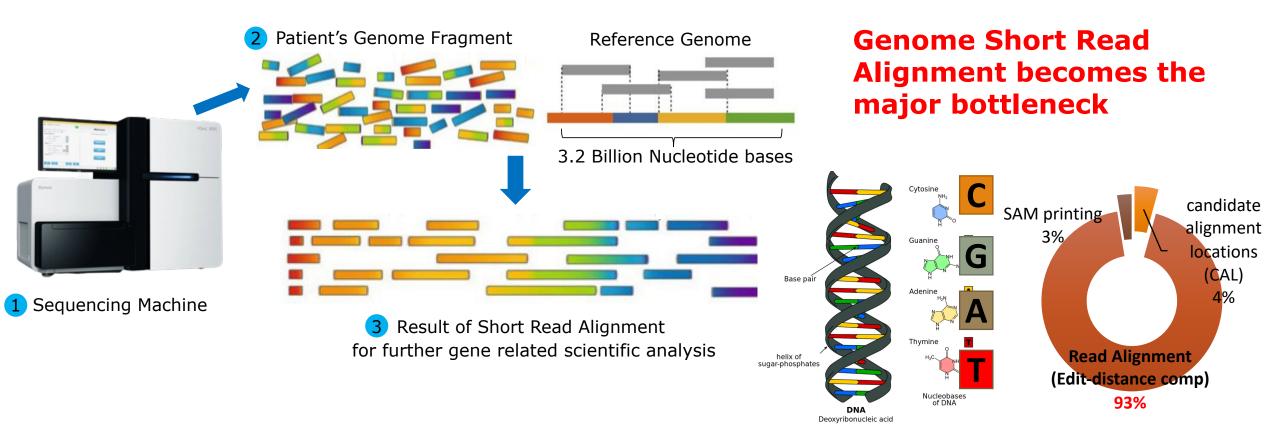
Digital (SRAM)-assisted analog RRAM IMC for robust computing under variations

TCAD, VLSI-TSA'23
More testing on going



in collaboration with Prof. Cady at SUNY, Prof. Seo at Cornell Tech and Prof. Cao at UMN

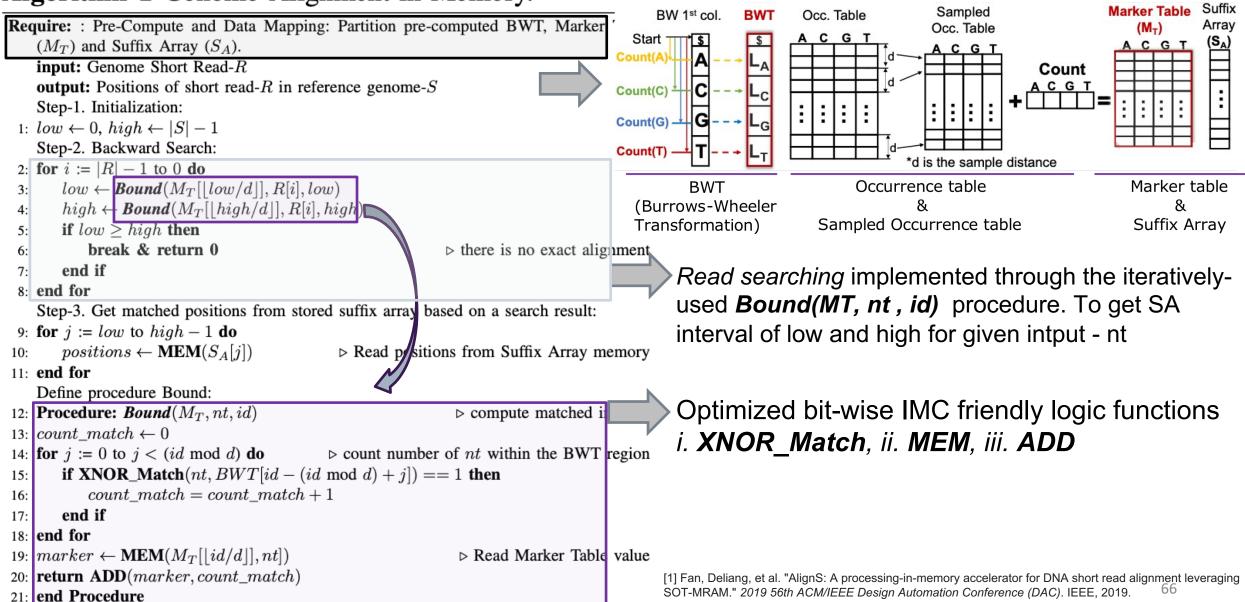
Genome Processing: Alignment is the Computing Bottleneck



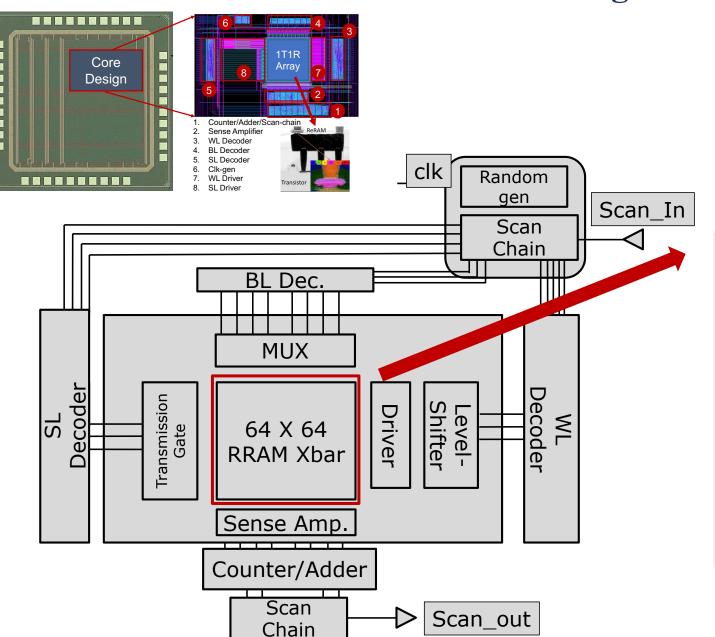
- Genome sequencing plays a pivotal role in disease diagnostics and personalized medicine strategies.
- The immense size of genome data poses challenges for GPUs/CPUs, primarily due to memory-wall constraints
- IMC stands out as a suitable option, due to the large data and simple operation.

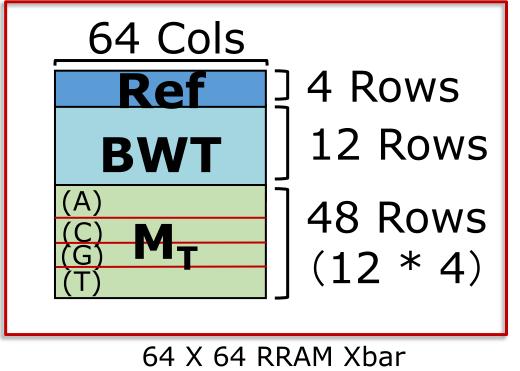
DNA Alignment-in-Memory Algorithm

Algorithm 1 Genome Alignment-in-Memory.

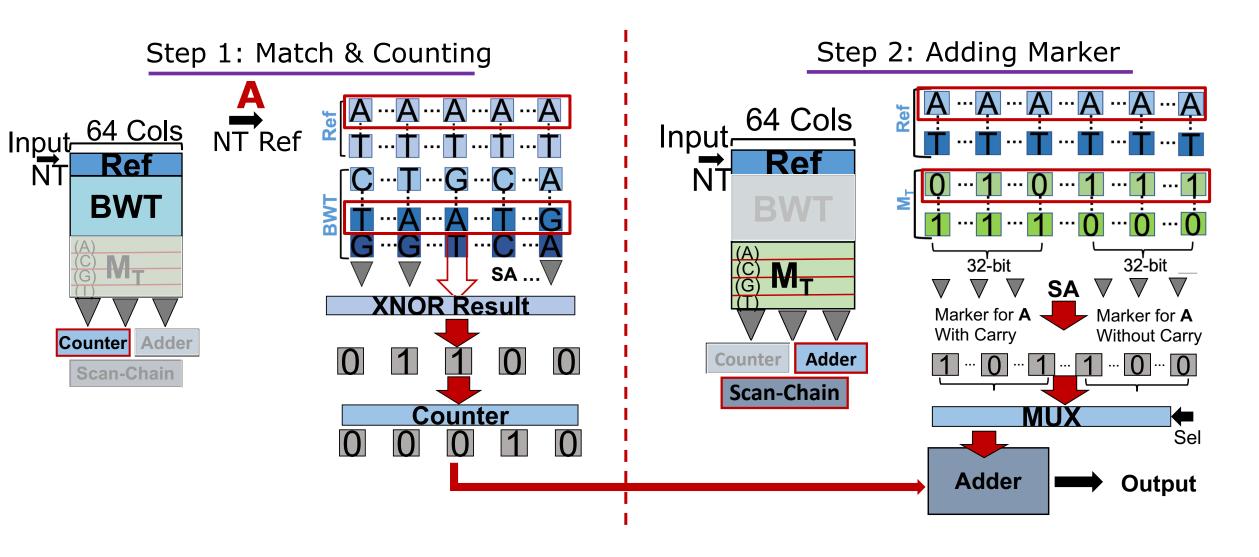


IMC Macro Block Diagram and Data Mapping

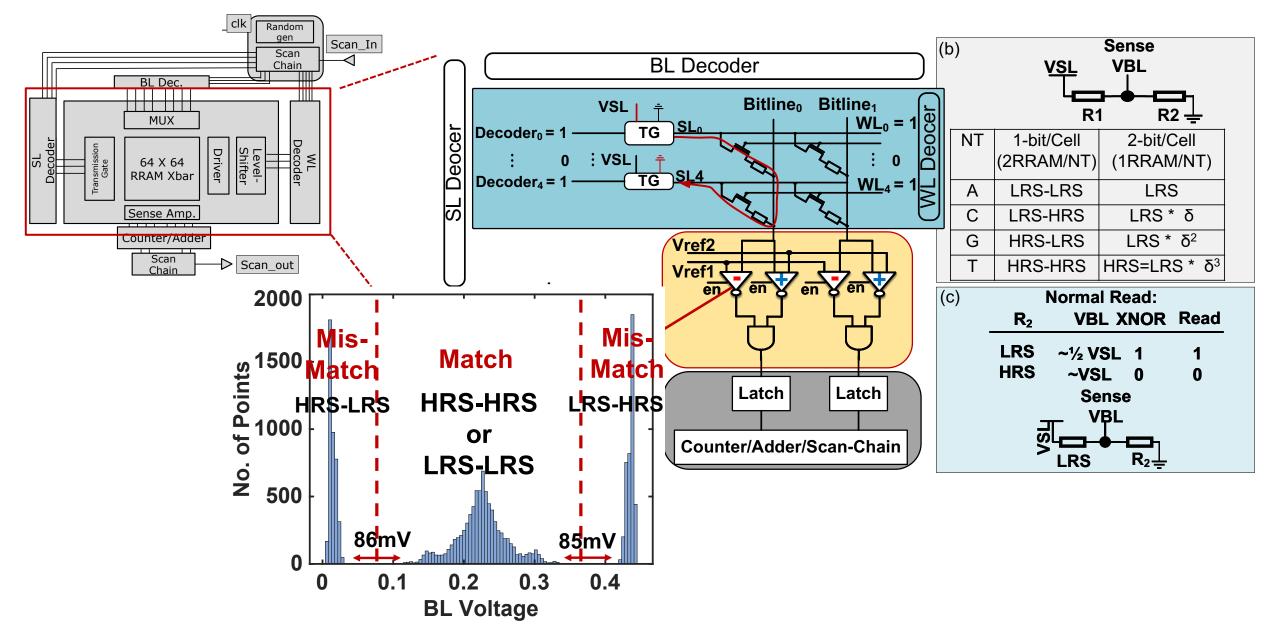




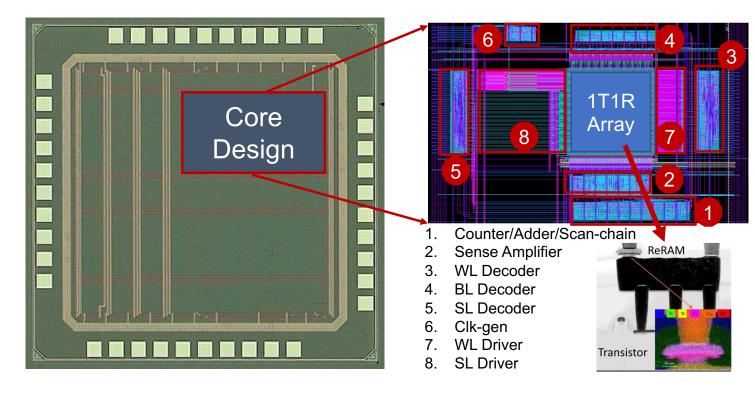
IMC Macro Design and Dataflow

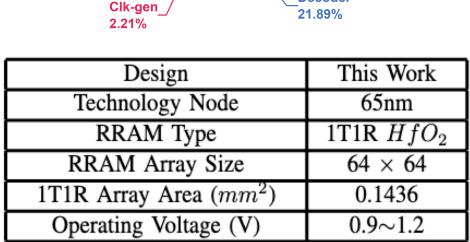


IMC Macro-Circuits



Prototype Chip Photo & Area Breakdown





Digital
Peripheral
10.92%

SA × **64**

BL Switch_ 6.99%

Operating Frequency (MHz)

Energy Efficiency (TOPS/W)

7.49%

_64×64 Xbar 37.81%

WL Driver +

Level Shifter

12.68%

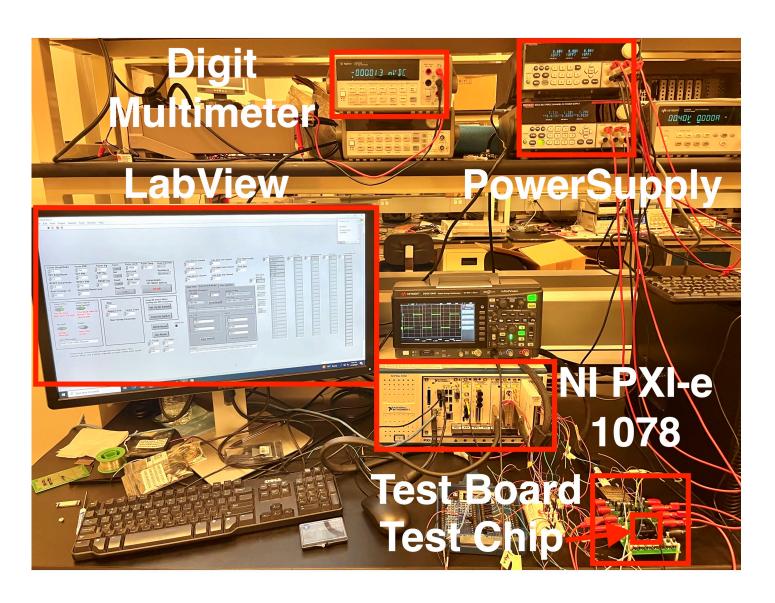
Decoder

- It is Pad-limited, occupying 5.175mm².
- The core design occupies 0.402mm².

 $23.7 \sim 84.5$

2.07 (at 1.0V

Experimental Test Environment



 Chip fabrication is collaborated with SUNY Polytechnic.

 Testing is performed on NI PXI-e 1078 with customized LabVIEW program.

Measurement Result

2000

• Forming:

$$V_{form} = 3.8V$$

Pulse = 10us
 $V_{WI} = 1.8V$

• Set:

$$V_{set} = 1.2V$$

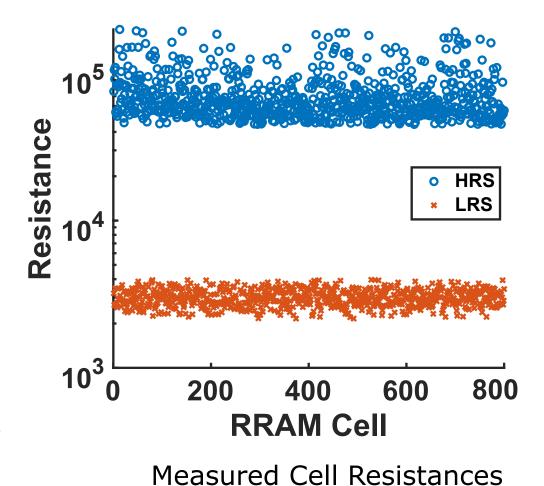
Pulse = 1us

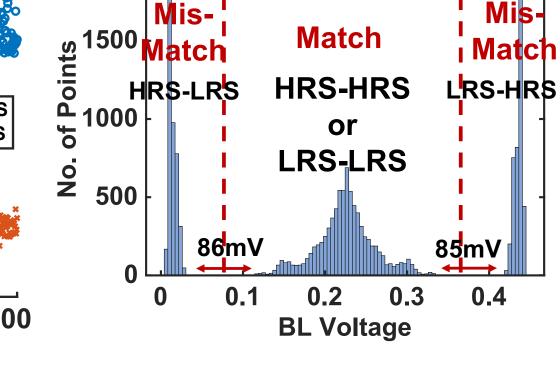
 $V_{WL} = 1.5V$

• Reset:

$$V_{reset} = 3.3V$$

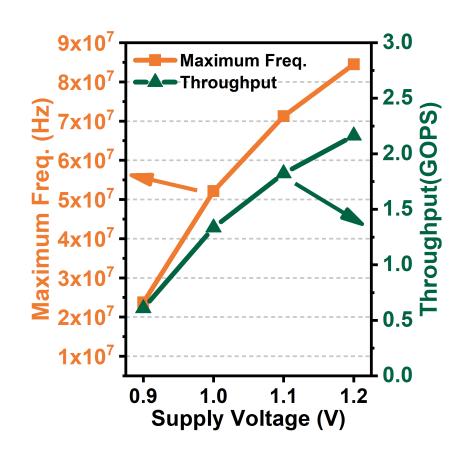
Pulse = 100ns
 $V_{WL} = 3.3V$

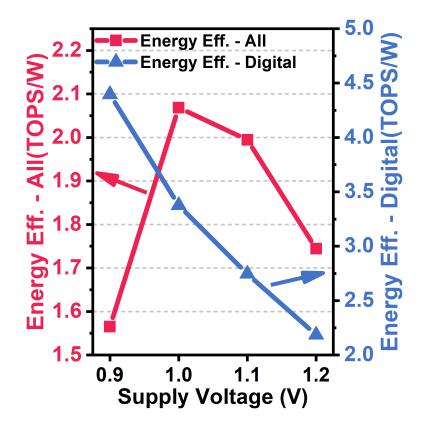




BL Voltage for XNOR

Freq., Throughput, and Energy





- Max energy efficiency: 2.07 TOPS/W @ 1.0V
- Max Freq: 84.5 MHz
- Max throughput 2.16 GOPS

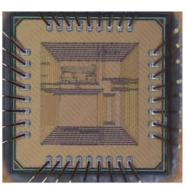
Comparison with Prior Works

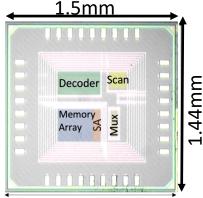
Metrics	CPU [10] AMD Opteron 6128	GPU [10] NVIDIA Tesla M2075	FPGA [12]	ASIC [10] CMOS	Ours CMOS+RRAM
Technology	45nm	40nm	28nm	40nm	65nm
Die Size (mm^2)	14.3k	1.6k	14.8	7.84	0.1436
Power (W)	80	< 200	247	0.135	0.01
Frequency (MHz)	2000	1150	200	200	84.5
On-Chip Memory (KB)	17,120	1,664	N/A	384	0.5(1-bit)/ 1(2-bit)
Throughput (suffixes/s)	6.9×10^4	8.3×10^5	1.5×10 ⁸	5.1×10 ⁶	2.12×10 ⁸
Energy Efficiency (suffixes/J)	870	4200	6.2×10^5	3.7×10 ⁸	2.12×10^9
Throughput-to-Area (suffixes/s/mm ²)	200	1600	420	6.4×10^5	1.47×10 ⁹

- 'Memory-Wall' limits CPU/GPU's throughput and energy efficiency.
- FPGA[12] has higher Perf. than CPU/GPU due to larger scale (8 FPGAs in the design).
- ASIC[10] significantly improved energy efficiency.
- Our first RRAM-based IMC macro achieves best efficiency with 2.07 TOPS/W and 2.12G suffixes/J at 1.0V

Our Developed IMC Chip Prototypes (examples): SRAM and NVM

- A 1.23-GHz 16-kb Programmable and Generic Processing-in-SRAM Accelerator in TSMC 65nm
- Published in ESSCIRC'2022



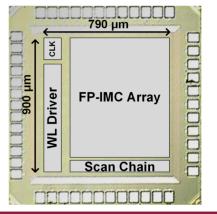


64x128 SP-IMC

Macro

I/O & Global Ctrl.

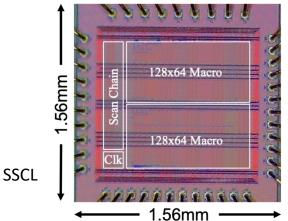
- All-Digital Configurable Floating-Point In-Memory Computing Macro in TSMC 28nm
- Published in ESSCIRC'2023



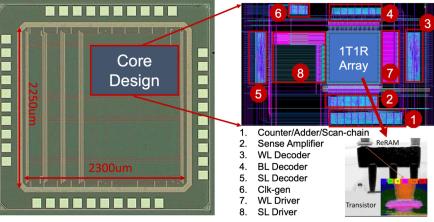
- 28 nm IMC chip prototype for sparse in-memory matrix convolution
- Supports N:M structured sparsity, run length encoding, compressed sparsity
- column
- Sparse NNWireless
- Wireless
 Decoder
 (Neural BP)

CICC'24

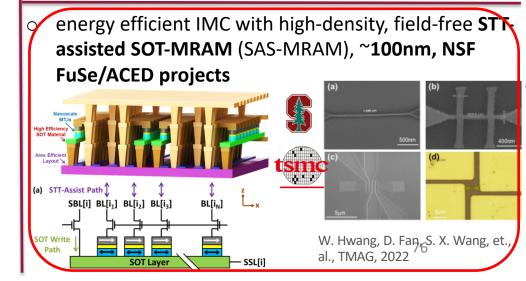
A 28nm 2385.7 TOPS/W/b Precision
 Scalable In-Memory Computing Macro with Bit-Parallel Inputs and Decomposable Weights for DNNs



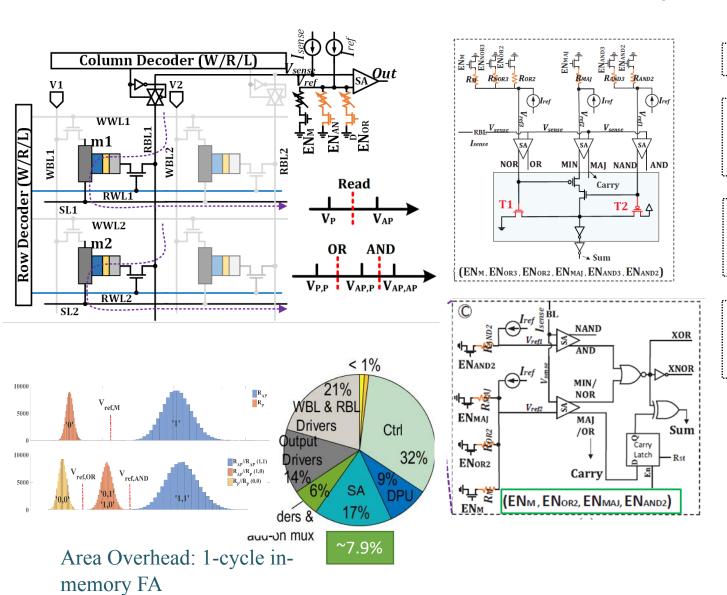
- hybrid 65nm CMOS-ReRAM (HfO2) designs for DNN acceleration and DNA genome sequence alignment applications.
- 64 by 64 HfO2 RRAM and SRAM module for hybrid computing



ESSCIRC'23, invited to extend to JSSC special issue



MRAM based In-memory logic circuit designs



PI of projects funded by SRC nCORE,

NSF FuSe, ACED, SHF, FET, etc.

D. Fan. et. al. DATE 2019, DAC 2019

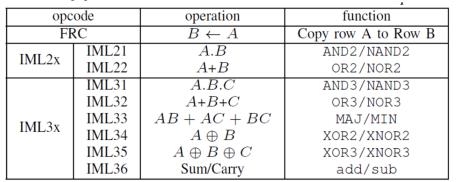
Basic In-Memory logic – AND/NAND, OR/NOR, (ASPDAC 2018)

More logic function supported: Reconfigurable AND/NAND, OR/NOR, XOR/XNOR, Majority In-Memory Logic in one design (DAC 2018, ICCAD 2018, ISVLSI 2018, TMAG2018, TCAD 2018)

Two-Cycle in-memory full adder: AND/NAND, OR/NOR, XOR/XNOR, Majority, Full adder, Adder/multiplier (DAC 2019, ASPDAC 2019)

One-Cycle in-memory full adder: AND/NAND, OR/NOR, XOR/XNOR, Majority, Full adder, more efficient adder/multiplier (DATE 2019/ICCAD 2019/ DAC2021)

Supported ISA



Best Paper Award: ISVLSI'17, GLSVLSI'19
Best Paper Candidate Nomination: DAC'21, DATE'22, DAC'22

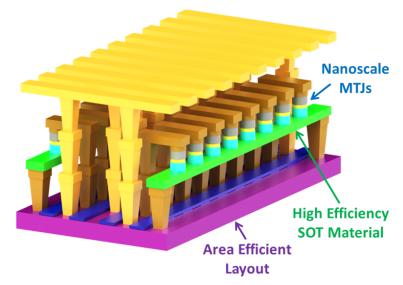
High Density STT-Assisted SOT-MRAM (SAS-MRAM)

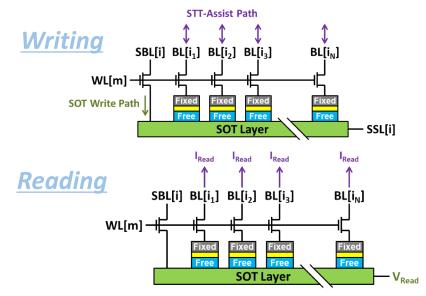
Achieves MRAM Design Goals:

- ✓ High Speed Switching (~1 ns)
- ✓ High Density (~1T1MTJ)
- ✓ Minimal current through tunnel barrier

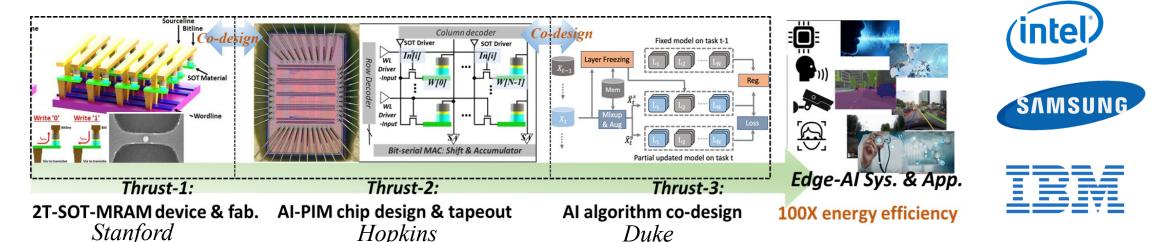
• SAS-MRAM Device:

- Multiple MTJs per SOT line
- Amortize SOT driver area
 &power





IMC microelectronic chip for Situation-Aware Edge-AI, newly awarded NSF FuSe (Future of Semiconductor, part of CHIPS Act) and ACED projects



In collaboration with Dr. Shan. X. Wang from Stanford University, preliminary results published in collaborative work: W. Hwang et al. "Energy Efficient Computing with High-Density, Field-Free STT-Assisted SOT-MRAM (SAS-MRAM), "TMAG 2022"

SAS-MRAM Device Prototype

TABLE I
RELEVANT MICROMAGNETIC SIMULATION PARAMETERS

	EEE THAT MICHONING VETTE D	INICLATION LAKAMETERS
Symbol	Quantity	Value
α	damping constant	0.008
$ heta_{ extit{SHA}}$	spin Hall angle	0.6
M_s	saturation magnetization	1.3 MA/m
t_{SOT}	SOT pulse width	2 ns
t_{STT}	STT pulse width	5 ns
w	MTJ critical dimension	18, 26, 40, 56, 80 nm
AR	MTJ aspect ratio	1.0 (<i>z</i> -type), or 3.0 (<i>x</i> -type)
t_F	free layer thickness	1 nm (z-type), or calculated according to Eq. 1 (x-type)
K_u	first order uniaxial anisotropy constant	calculated according to Eq. 2 (<i>z</i> -type), or 0.31 MJ/m ³ (<i>x</i> -type)
_	MuMax3 cell size	$1 \text{ nm} \times 1 \text{ nm} \times t_F$

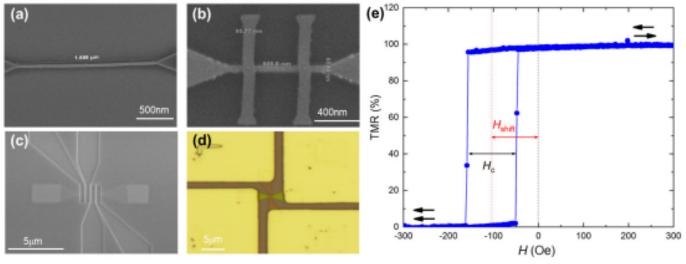
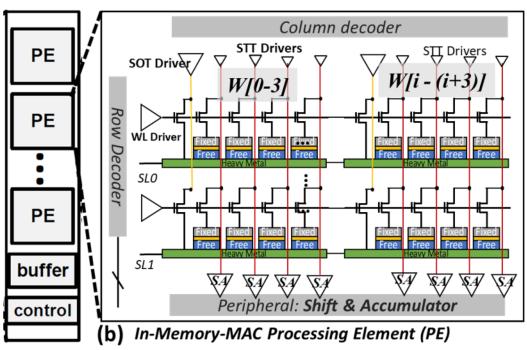


Fig. 8. SEM images of (a) SOT line patterning (mask1), (b) self-aligned double-MTJ cells (mask2) and (c) top electrodes and SOT ohmic contacts of quad-MTJ cells (mask3). (d) Optical micrograph of the SAS-MRAM device. (e) Field-dependent TMR curve of a 100 nm × 50 nm MTJ cell.

In collaboration with Dr. Shan. X. Wang from Stanford University, preliminary results published in collaborative work: W. Hwang et al. "Energy Efficient Computing with High-Density, Field-Free STT-Assisted SOT-MRAM (SAS-MRAM),"TMAG 2022

In-MRAM MAC for AI On-Chip Inference and Learning

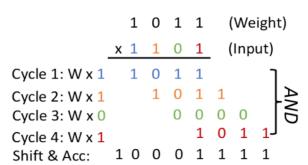


Digital bit-serial in-MRAM MAC operations

Bit-serial input sent to the read transistor gate

Example: 4b input(a) x 4b weight(w)
4 bit input broadcast to WL in bit-serial
4b weight bits stored in 4 MTJs
Read 'AND' logic in 'SA', then shift&accu.

1-Bit Multiplication (AND) in memory



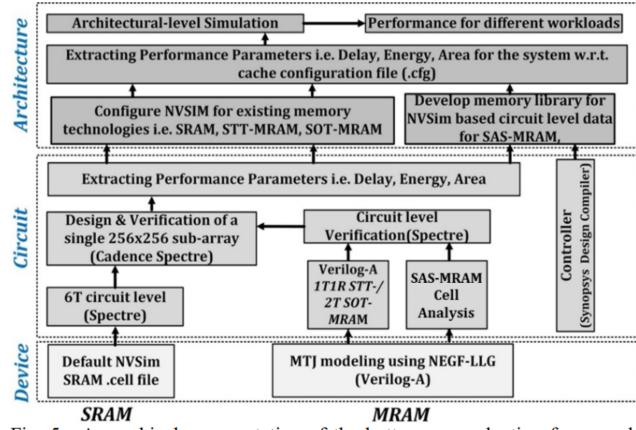


Fig. 5. A graphical representation of the bottom-up evaluation framework which was used to evaluate the array-level performance in this work.

Dr. Fan's group developed cross-layer in-memory computing simulator: PIMA-SIM, Open-sourced in github:

https://github.com/ASU-ESIC-FAN-Lab/PIMA-SIM

D. Fan, et. al., ""On-Device Continual Learning with STT-Assisted-SOT MRAM based In-Memory Computing," " TCAD 2024

Energy Savings of SAS-MRAM over SRAM for On-Chip Learning

- Cost of Performing One ResNet-18 Weight Update (8-bit)
 - Training from scratch requires ~421,875 weight updates

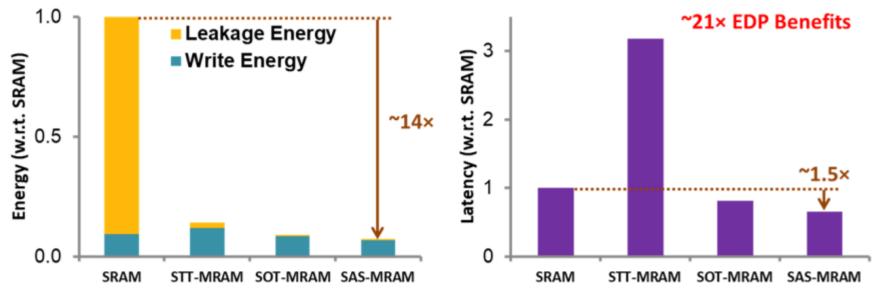
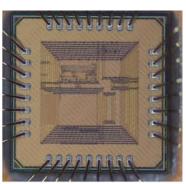
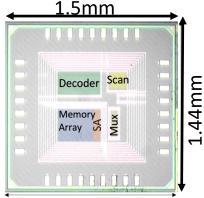


Fig. 6. Energy and latency required for one epoch of ResNet-18 weight update for various MRAM technologies vs. SRAM. SAS-MRAM shows ~21× EDP benefits with respect to SRAM when evaluated using the NCSU 45nm PDK.

Summary: Our Developed IMC Chip Prototypes: SRAM and NVM

- A 1.23-GHz 16-kb Programmable and Generic Processing-in-SRAM Accelerator in TSMC 65nm
- Published in ESSCIRC'2022



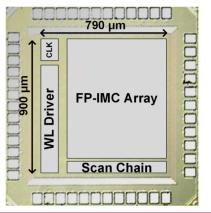


64x128 SP-IMC

Macro

I/O & Global Ctrl.

- All-Digital Configurable Floating-Point In-Memory Computing Macro in TSMC 28nm
- Published in ESSCIRC'2023



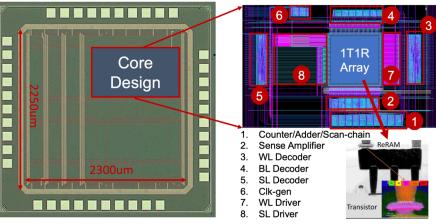
- 28 nm IMC chip prototype for sparse in-memory matrix convolution
- Supports N:M structured sparsity, run length encoding, compressed sparsity
- column
- Sparse NNWireless
- Decoder
 (Neural BP)

CICC'24

A 28nm 2385.7 TOPS/W/b Precision
Scalable In-Memory Computing Macro
with Bit-Parallel Inputs and
Decomposable Weights for DNNs

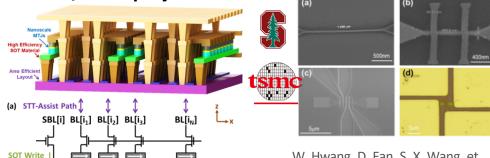


- hybrid 65nm CMOS-ReRAM (HfO2) designs for DNN acceleration and DNA genome sequence alignment applications.
- 64 by 64 HfO2 RRAM and SRAM module for hybrid computing



ESSCIRC'23, invited to extend to JSSC special issue

energy efficient IMC with high-density, field-free STT-assisted SOT-MRAM (SAS-MRAM), ~100nm, NSF
 FuSe/ACED projects

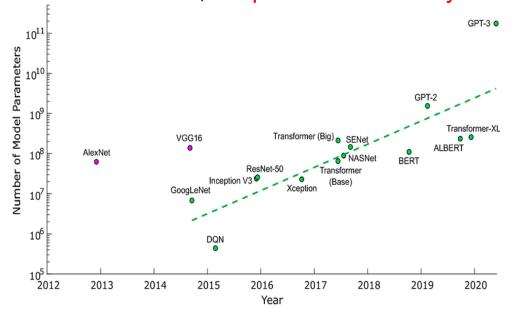


W. Hwang, D. Fan S. X. Wang, et., al., TMAG, 2022

Efficient AI Computing-in-Memory Needs Algorithm Co-Design

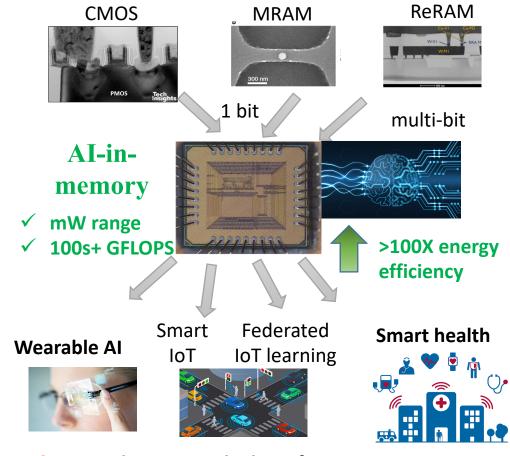
Efficient AI Computing-in-Memory Needs Algorithm Co-Design

 With the evolution of AI goes larger and deeper, <u>memory/computational resources</u> and <u>their communication</u> have faced inevitable limitations, "AI power and memory wall").



Objective: AI-in-Memory hardware friendly DNN System:

- Hardware friendly model compression, sparse processing, decomposition...
- Without losing inference accuracy
- Run-time dynamics, spatiotemporal dynamics
- Reliability/robustness
- Learning on-chip
- Security/privacy/trustworthy



Objective: low power, high performance computing, reliable, smaller AI model, learning-on-device, secure, trustworthy, and more...

Research projects funded by NSF FuSe, ACED, SHF, CPS, FET, Satc, Career, DARPA, IARPA, SRC, etc.

Algorithm Co-Design for Efficient Deep Learning at Edge

Part I: Efficient & dynamic inference

Hardware-aware model compression

CVPR'19, WACV'19, AAAI'20 (spotlight), TNNLS'20, CVPR'22

Run-time model dynamic inference

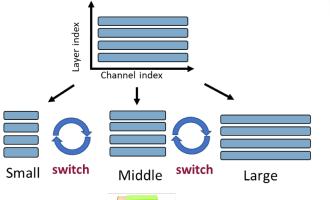
NeurIPS'22, DAC'20, TNNLS'22

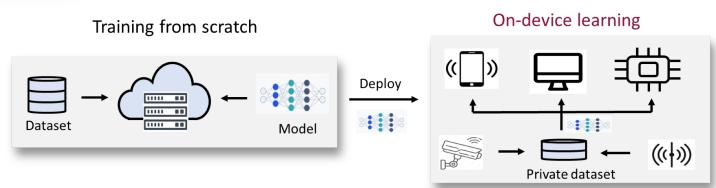
Part II: Efficient learning

Compute- and Memory-Efficient On-device

- Continual/Transfer Learning,
 - Self-Supervised Learning

NeurIPS'23, CVPR'21, CVPR'22, CVPR-ECV'22 ICLR'22 (Spotlight), NeurIPS'22, AAAI'22





1.1 Hardware-aware Model Compression: Weight Ternarization

Ternarize all model weights from floating point number to {-1, 0, +1} states

Benefits and Challenges:

- Model size reduced by 16X from 32-bit floating point number
- Convolution computation only involves addition, and thus computing complexity for hardware greatly reduced
- Challenge is how to minimize the accuracy degradation as small as possible. no degradation ideally!
 Table 5. Validation accuracy (top1/top5 %) of ResNet-18b on ImageNet with/without residual expansion layer (REL).

	First layer	Last layer	Accuracy (top1/top5)	Accuracy gap	Comp.
Full precision	FP	FP	69.75/89.07	-/-	1×
T_{ex} =1 T_{ex} =1	FP Tern	FP Tern	67.95/88.0 66.01/86.78	-1.8/-1.0 -3.74/-2.29	$\begin{array}{l} \sim 16 \times \\ \sim 16 \times \end{array}$
T_{ex} =2 T_{ex} =2	FP Tern	FP Tern	69.33/89.68 68.05/88.04	-0.42/+0.61 -1.70/-1.03	~ 8× ~ 8×
T_{ex} =4	Tern	Tern	69.44/88.91	-0.31/-0.16	$\sim 4 \times$

D. Fan, et. al., CVPR 2019, WACV 2019

1.2 Processing-Element wise Structured Pruning combined with weight ternarization

published in AAAI-2020 as spotlight paper

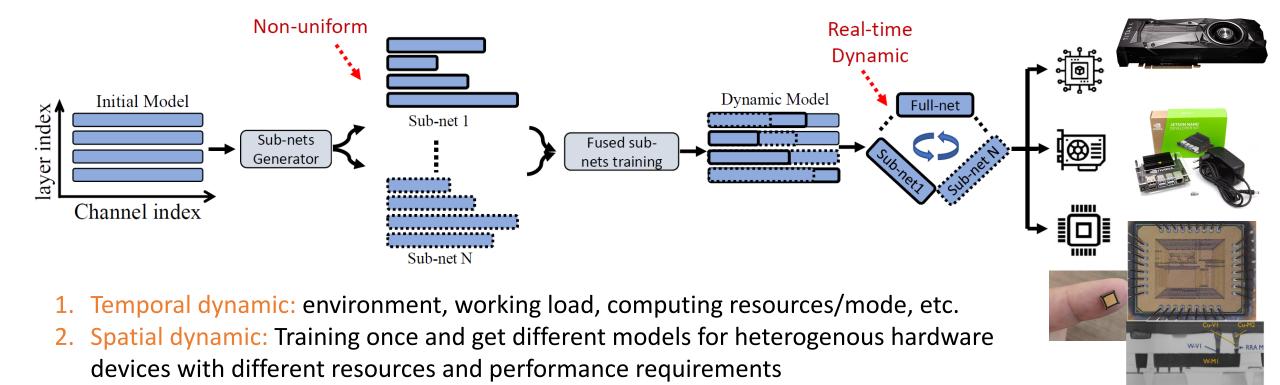
 Aim to effectively integrate structured weight pruning and ternarization to boost the performance of DNN inference on hardware platform, with ultra-small accuracy degradation

	Quan scheme	First layer	Last layer	Accuracy (top1/top/5)	Comp. rate
Baseline	-	FP	FP	69.75/89.07	1×
BWN ABC-Net ADMM	Bin. Bin. Bin.	FP FP FP	FP FP FP	60.8/83.0 68.3/87.9 64.8/86.2	$\begin{array}{l} \sim 32 \times \\ \sim 6.4 \times \\ \sim 32 \times \end{array}$
TWN TTN ADMM (He 2019)	Tern. Tern. Tern. Tern.	FP FP FP FP	FP FP FP FP	61.8/84.2 66.6/87.2 67.0/87.5 67.95/88.0	
Ours	Tern.	FP	FP	68.01/88.13	$\sim 21.3 \times$

{white, grey, black} denotes {-1,0,+1}

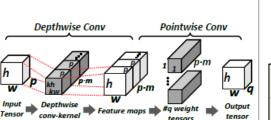
- Comparing with weight Binarization and Ternarization without pruning
- Achieve both high accuracy and compression rate
- Even better accuracy and higher compression rate than ternary-only

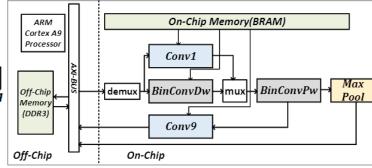
1.3 Make DNN flexible and run-time dynamic

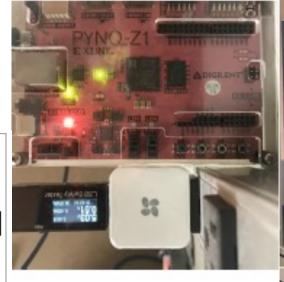


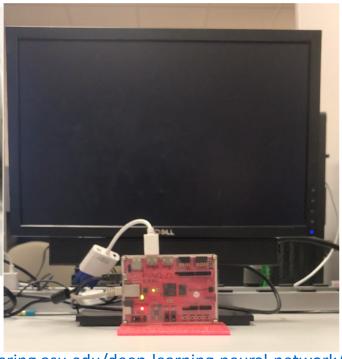
- Li Yang, Zhezhi He, Yu Cao and Deliang Fan. "Non-uniform DNN Structured Subnets Sampling for Dynamic Inference". *In: 57th Design Automation Conference (DAC)*, San Francisco, CA, July 19-23, 2020
- Li Yang, Shaahin Angizi, Deliang Fan, "A Flexible Processing-in-Memory Accelerator for Dynamic Channel-Adaptive Deep Neural Networks," Asia and South Pacific Design Automation Conference (*ASP-DAC*), Jan. 13-16, 2020,
- Li Yang, Zhezhi He, Yu Cao and Deliang Fan, "A Progressive Sub-network Searching Framework for Dynamic Inference", IEEE TNNLS
- Li Yang, Jian Meng, Jae-sun Seo, and Deliang Fan, "Get More at Once: Alternating Sparse Training with Gradient Correction," Thirty-sixth Conference on Neural Information Processing Systems (*NeurIPS*), New Orleans, LA, 2022

System demo-1: Deep Neural Network IoT FPGA







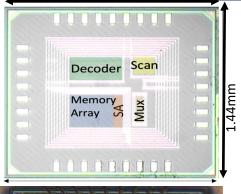


Name	IOU	Power	FPS	ES	TS
TGIIF	0.62	4.2	11.955	1.0318	1.2674
SystemsETHZ	0.49	2.45	25.968	1.3976	1.1794
iSmart2	0.57	2.59	7.349	1.0297	1.1636
traix	0.61	3.11	5.445	0.8869	1.1523
hwac-object-tracker	0.52	3.66	4.935	0.8155	0.932
Ours	0.57	2.61	11.1	1.1477	1.224

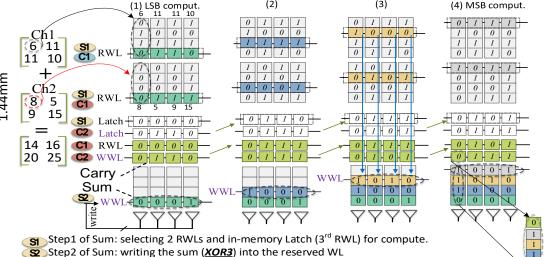
https://dfan.engineering.asu.edu/deep-learning-neural-network/

- Our model is only **143Kb** with 8 conv layers and 1 FC layer
- DNN model completely stored in on-chip cache, no need to fetch model from main memory
- PYNQ-Z1 only has 4.9Mb on chip RAM and our model only consumes 2.61 W

System-2: AI-in-Memory Chip Prototype (65nm)

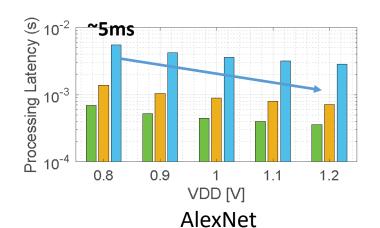


1.5mm



Step1 of Carry: selecting 3 RWLs for compute based on Majority function.

Step2 of Carry: writing the carry into reserved WL



Generic Accelerators

@TSMC 65nm

@15IVIC 65nm

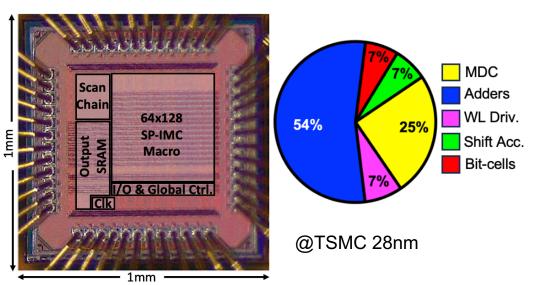
Technology	65nm
Bitcell Size	1.68umx2.715um
Chip Size	1.5x1.44 mm ²
Supply Voltage	0.8-1.2V
Memory Capacity	2KB
SRAM Sub array	128x128
Clock Frequency	1.23Ghz@1.2V
Average power	36mW@1.2V

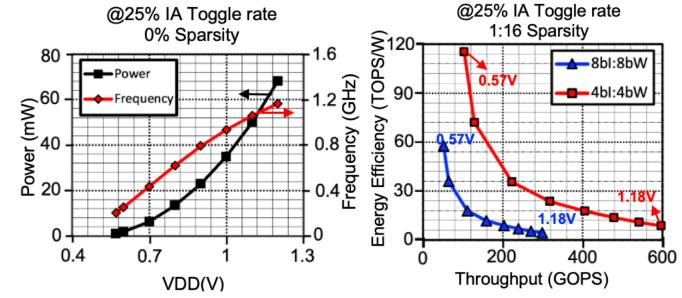
- [1] A. Biswas, et al., JSSC, 2019.
- [2] H. Valavi, et al., JSSC, 2019.
- [3] W. Jingcheng, et al., JSSC, 2019.
- [4] Y. Zhang, et al., Symp. VLSI Circuits, 2019.

Reference	Proposed	JSSC'19 [1]	JSSC'19 [2]	JSSC'20 [3]	VLSI Symp'18 [4]
Technology	65nm	65nm	65nm	28nm	40nm
Bit cell Density	8T	10T	8T	8T Transposable	10T
Supply Voltage	0.8-1.2V	0.8-1.2V	0.68-1.2V	0.6 - 1.1V	0.5-0.9V
Max Frequency	1230MHz(1.2V)	5MHz	100MHz	475MHz (1.1V)	28.8MHz (0.7V)
SRAM Macro Size	2KB	2KB	4.8KB	16 KB	8KB
Die Area	$2.16 \mathrm{mm}^2$	$4mm^2$	$12.6 \mathrm{mm}^2$	2.7mm^2	$1.275 \mathrm{mm}^2$
Performance (GOPS)	629.76	0.75	147	32.7	14.7
Performance per unit Area (GOPS/mm2)	291.56	11.9	11.7	27.3	70
Energy Efficiency (TOPS/W)	17.49	4.81	10.3	5.27 (add) 0.55(Mult)	31.28
Reconfigurable	Programmable	N/A	N/A	Programmable	N/A

BNN Accelerators

System-3: Sparse AI-in-Memory Chip Prototype (28nm)





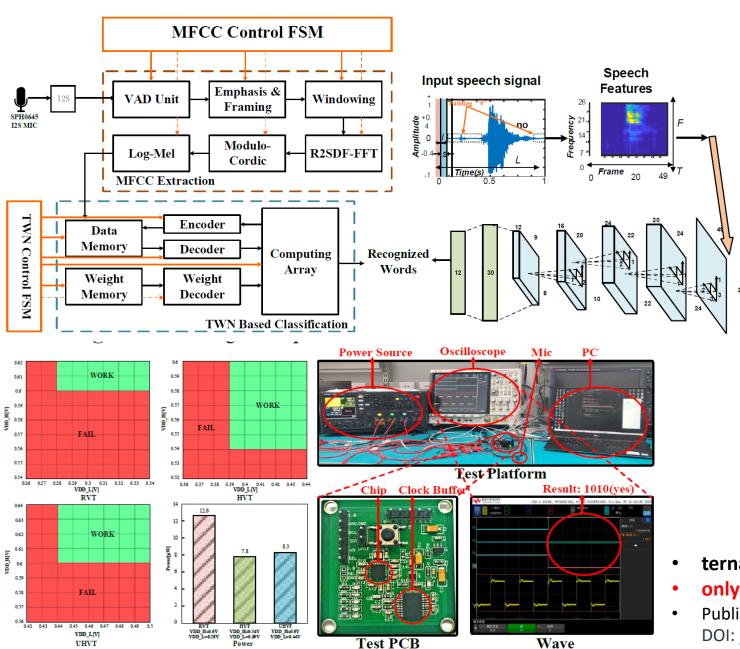
Work	ISSCC'22 [1]	ISSCC' 23 [4]	ISSCC'22 [6]	ISSCC'23 [2]	ESSCIRC'23 [3]	This Work
Technology	28nm	28nm	5nm	4nm	28nm	28nm
IMC Sparsity Support	Х	Х	Х	Х	Х	RLC/CSC/N:M
Supply Voltage (V)	0.45-1.10	0.64-1.03	0.5-0.9	0.32-1.1	0.9-1.1	0.57-1.18
Macro Area (mm²)	0.049	NA	0.0133	0.0172	0.0159	0.24
Clock Frequency (MHz)	250	20-320	360-1440	1490	30-360	201-1160
Bitcell Transistors	8T	8T(55%) 10T(45%)	12T	8T x 2bit +OAI	6T+0.5T	6T+4T(50%) 6T(50%)
Array Size(b)	16K	1.15M	64K	54K	16K	4K(Weights) + 4K(Index)
Bit Precision	IA:1-4b W:1b	INT8	IA: 1-8b W:4b	IA: 8/12/16 W: 8/12	IA: 1-8 W:8	IP:2b/4b/8b W:4b/8b
Full output precision	No	Yes	Yes	Yes	Yes	Yes
Performance(GOPS) ^{1,2,7}	62.5*	22.9*	104.735	127.15	0.95-11.6	41.29-238.86 ⁶
Peak Energy Efficiency ^{2,7} (TOPS/W)	9.6-15.5	15.6 ⁴ /70.37 ⁵ (System)	17.5-63	87.4 ⁽⁸⁾ 41.3 ⁽⁹⁾	22.4-60.4	4.38-57.67 ⁶
Compute Density ^{2,3,7} TOPS/mm ²	2.59	0.85	0.44-1.76	0.27-1.01	0.12-1.46	0.21-1.2 ⁷
FoM	3.182K	2.97K⁴ 3.25K⁵	3.942K	3.219K	0.9K-4.1K	11K-24K(1:16) 5.5K-12K(1:8)

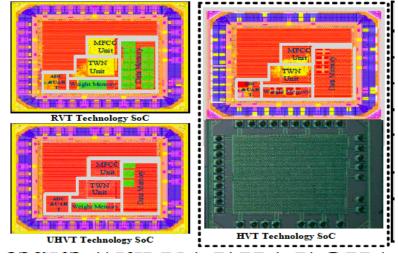
- 8-bit Resnet-18
- Best Performance (GOPS)
- SoTA Energy Efficiency, ~60TOPS/W,
 ~100X better than GPU
- Best FoM

FoM = $TOPS/W^{(7)} * TOPS/mm^{2} * # of W/kb$

[CICC'24] D. Fan. et. al., "SP-IMC: A Sparsity Aware In-Memory-Computing Macro in 28nm CMOS with Configurable Sparse Representation for Highly Sparse DNN Workloads," *IEEE Custom Integrated Circuits Conference (CICC)*, 21 – 24 April 2024, Denver, CO

System-4: CMOS AI-ASIC of Ternary Network (22nm)





Technology	22 nm HVT CMOS
Supply voltage	0.39 V/ 0.54 V
Frequency	250 KHz
Core size	0.99x0.61mm ²
Die size	1 mm ²
Logic gates (NAND2)	0.58 million
SRAM	8 kB
Power consumption	4.8 μ W (average) 7.8 μ W (peak)

- ternary neural network for keyword voice recognition
- only 4.8uW @22nm, 250KHz, 8KB memory, accuracy: 90.6%
- Published in IEEE Open Journal of the Solid-State Circuits Society , 2023,

DOI: <u>10.1109/OJSSCS.2023.3312354</u>

Algorithm Co-Design for Efficient Deep Learning at Edge

Part I: Efficient & dynamic inference

Hardware-aware model compression

CVPR'19, WACV'19, AAAI'20 (spotlight), TNNLS'20, CVPR'22

Run-time model dynamic inference

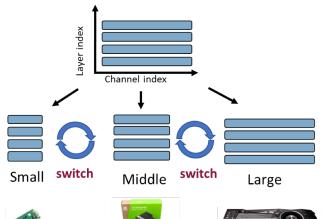
NeurIPS'22, DAC'20, TNNLS'22

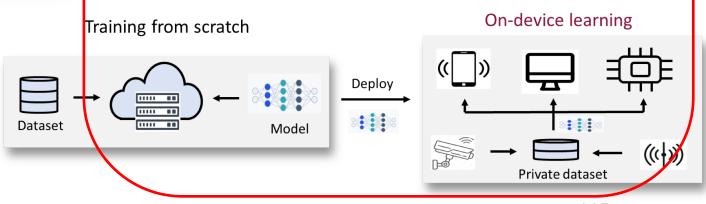
Part II: Efficient learning

Compute- and Memory-Efficient On-device

- Continual/Transfer Learning,
 - Self-Supervised Learning

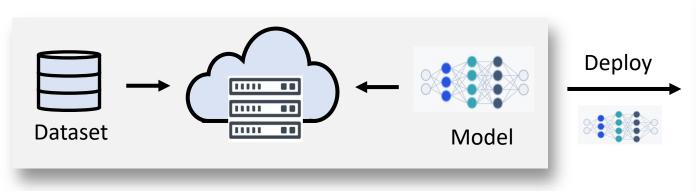
NeurIPS'23, CVPR'21, CVPR'22, CVPR-ECV'22 ICLR'22 (Spotlight), NeurIPS'22, AAAI'22





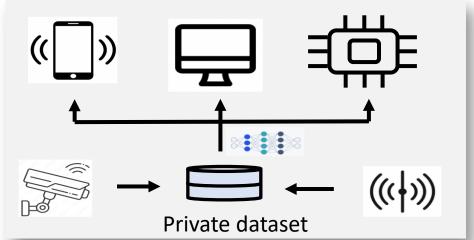
Background of on-device learning

Training from scratch



- Update all parameters
- Large dataset
- Large training volume (e.g, epochs, batchsize)

On-device learning



- Transfer Learning
- Continual Learning
- Pre-trained model
- Streaming tasks
- Small training volume

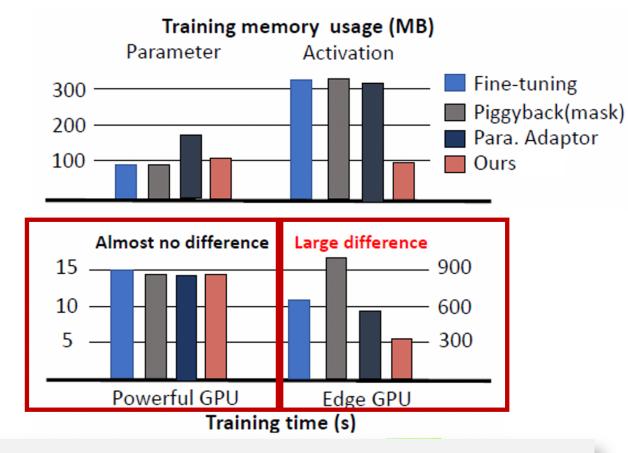
Motivation & Challenge: On-Device Learning

Training process is compute-intensive

Mask or adaptor based compute-efficient continual learning

But still memory-intensive

- Activation/features memory is almost 3X larger than the model itself
- powerful GPU: large memory usage during training is not an issue
- tiny GPU: large memory usage becomes the bottleneck for training speed



Conclusion: conventional compute-efficient continual learning process is still memory-intensive, the intermediate activation memory during training is the bottleneck

ImageNet dataset) to Flower dataset.

On-Device Multi-Domain Learning. (CVPR-ECV'22)

Memory Usage in Continual Training

Fine-tuning based methods:

$$a_{i+1} = a_i \mathbf{W} + b$$

 $a_{i+1} = a_i \mathbf{W} + b$ • Then, the weight back-propagation process is $\frac{\partial \mathcal{L}}{\partial \mathbf{W}} = a_i \frac{\partial \mathcal{L}}{\partial a_{i+1}} \quad \mathbf{\&} \quad \frac{\partial \mathcal{L}}{\partial b} = \frac{\partial \mathcal{L}}{\partial a_{i+1}}$

$$\frac{\partial \mathcal{L}}{\partial \mathbf{W}} = \frac{\mathbf{a_i}}{\partial a_{i+1}}$$

$$\frac{\partial \mathcal{L}}{\partial b} = \frac{\partial \mathcal{L}}{\partial a_{i+1}}$$

Mask-based learning method:

assume a linear layer whose forward process is • assume a linear layer whose forward process is

$$a_{i+1} = a_i(\mathbf{W} \cdot \mathbf{M})$$

 $a_{i+1} = a_i(\mathbf{W} \cdot \mathbf{M})$ • Then, the mask back-propagation process is

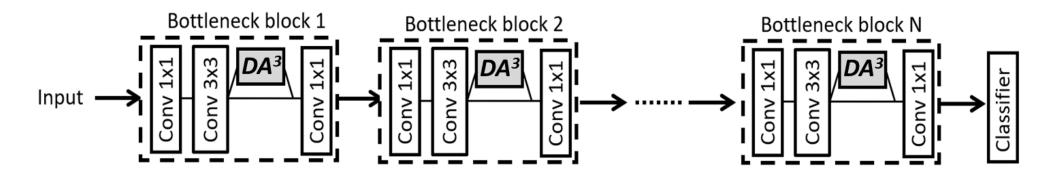
$$\frac{\partial \mathcal{L}}{\partial \mathbf{M}} = \frac{a_i}{\partial a_{i+1}} \cdot \mathbf{W}$$

Conclusion:

- Multiplicative relationship causes large memory usage: To update weight-W or mask-M, activation- a_i needs to be stored for computing, causing large memory usage
- Additive relationship needs no activation buffering: if only updating bias-b, large activation memory could be saved

Problem: only updating bias has very limited adaption capacity to learn new domain data

Solution-1: DA^3 : Deep Additive Attention Adaptor



Problem: only updating bias has very limited adaption capacity to learn new domain data

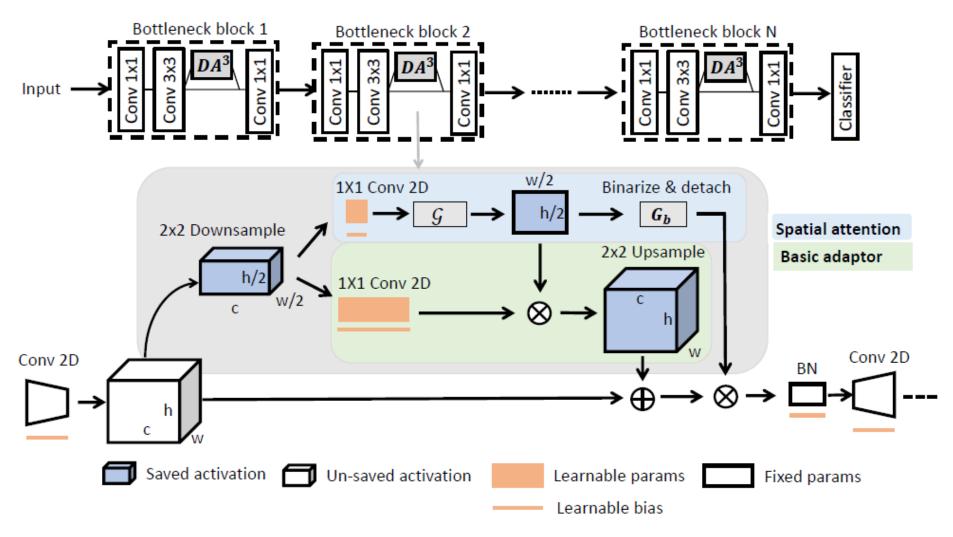
Solution: designed Additive Attention Adaptor (DA^3)

$$\mathbf{A}_i^* = \mathbf{A}_i + \mathbf{D}\mathbf{A}^3(\mathbf{A}_i)$$

- Improved the domain adaption capacity
- Reduced computation: freeze the weight of pre-trained model, and only updates DA^3
- Reduced Memory usage:
 - Additive relationship needs no activation storage of pre-trained model, only tiny DA^3
 - DA^3 module could be mapped to the SRAM module for frequent update, and backbone model could be mapped to the RRAM module for maintaining the basic backbone forward operations

Li Yang, Adnan Siraj Rakin, and Deliang Fan, "DA3: Dynamic Additive Attention Adaption for Memory-Efficient On-Device Learning" Efficient Deep Learning for Computer Vision CVPR Workshop,, New Orleans, Louisiana, June 19-24, 2022

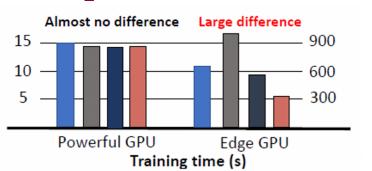
DA³:Deep Additive Attention Adaptor



- light-weight 1x1 convolution layer, as well as an attention module to filter out features for certain new domain/task
- To further reduce the activation size, a 2×2 average pooling to down-sample the input feature map

Experiments: ImageNet-to-Sketch dataset

- Setting: ResNet50 pretrained on ImageNet dataset
- Accuracy Comparison: achieves the best accuracy in CUBS, Stanford Cars and Flowers dataset.
- Training Cost Comparison
 - Reduce the activation memory size by 19-37×
 - Training time reduces nearly by 2×



Accuracy

Model	CUBS	Stanford Cars	Flowers	WikiArt	Sketches	Average
Standard Fine-tuning [7]	81.86	89.74	93.67	75.60	79.58	84.09
BN Fine-tuning [15]	80.12	87.54	91.32	70.31	78.45	81.54
Parallel Res. adapt [18]	82.54	91.21	96.03	73.68	82.22	85.14
Series Res. adapt [17]	81.45	89.65	95.77	72.12	80.48	83.89
Piggyback [13]	81.59	89.62	94.77	71.33	79.91	83.45
TinyTL* [2]	82.34	90.23	94.63	71.39	80.44	83.80
Ours (DA^3)	83.33	91.50	96.65	72.79	82.20	85.29

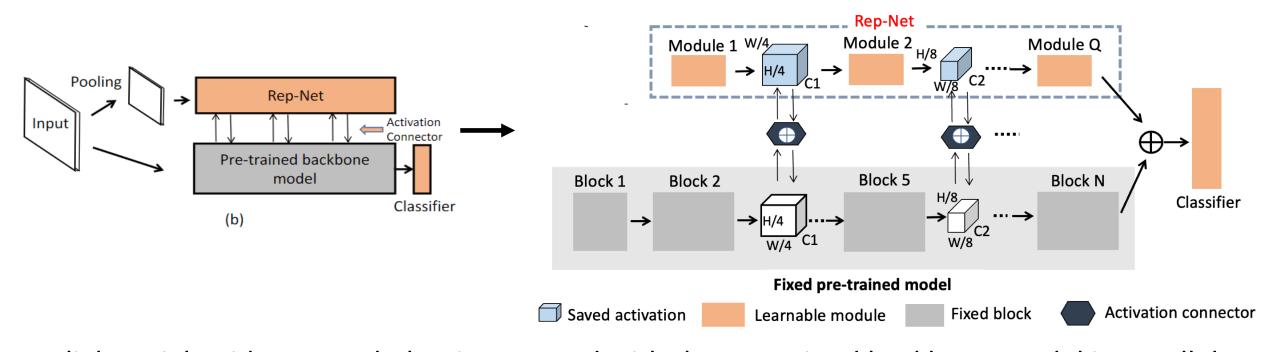
best

Training memory(MB) and training time (s)) on NVIDIA Jetson Nano GPU

	Flowers	CUBS	Cars	Sketches			
Methods	Model param (MB)	Active. mem (MB)	Inference GFlops	<	- Training	g Time (s)	>
Standard Fine-tuning	91.27	343.76	4.15	686	1977	2676	5843
BN Fine-tuning	91.27	174.17	4.15	173	507	683	1300
Parallel Res. adapt	177.8	308.8	4.68	558	1741	2310	4669
Series Res. adapt	178	309.55	4.68	570	1832	2490	4783
Piggyback	94.12	343.76	3.44	1061	3015	4327	9783
TinyTL	117.3	50.9	4.42	493	1570	2103	4372
Ours (DA^3)	98.64	10.49	3.17	308	834	1073	2274

Note: training time is the <u>measured GPU time</u> of training one epoch with batch size 4 in average.

Solution-2: Rep-Net: Tiny Reprogramming Network



- A lightweight side-network that is executed with the pretrained backbone model in parallel
- Consist of multiple modules (2 conv + batchnorm)
- Activation connector to reprogram the feature of fixed backbone model

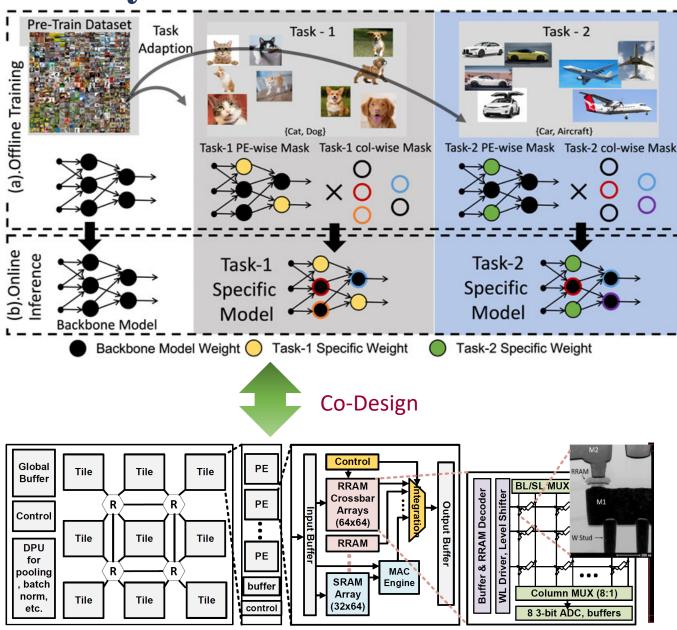
Improve the domain adaption capacity: to learn new domain, as well as reducing computation, freeze the weight of pre-trained model, and only updates tiny Rep - Net portion. Memory efficient without storing activation mem.

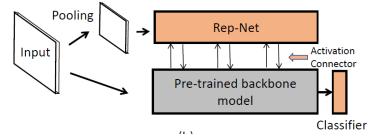
Comparison with SOTA in Transfer Learning

Method	Net	Train. mem	Reduce Ratio	Flowers	Cars	CUB	Food	Pets	Aircraft	CIFAR10	CIFAR100
	I-V3 [29]	850MB	1.0×	96.3	91.3	82.8	88.7	-	85.5	-	-
PT P11	R-50 [20]	802MB	1.1×	97.5	91.7	-	87.8	92.5	86.6	96.8	84.5
FT-Full	M2-1.4 [20]	644MB	1.3×	97.5	91.8	-	87.7	91.0	86.8	96.1	82.5
	N-A [20]	566MB	1.5×	96.8	88.5	-	85.5	89.4	72.8	96.8	83.9
FT-Last	I-V3 [29]	94MB	9.0×	84.5	55.0	-	-	-	45.9	-	-
TinyTL-Random [3]	PM	37MB	22.9×	88.0	82.4	72.9	79.3	84.3	73.6	95.7	81.4
TinyTL [3]	PM	37MB	22.9×	95.5	85.0	77.1	79.7	91.8	75.4	95.9	81.4
Ours	PM	<i>34MB</i> (↓ <i>3</i>)	25×	96.1	85.8	77.8	80.5	91.8	<i>77.4</i> (↑2%)	95.9	81.9
TinyTL [3]	PM@320	65MB	13.1×	96.8	88.8	81.0	82.9	92.9	82.3	96.1	81.5
Ours	PM@320	<i>61MB</i> (↓ <i>4</i>)	13.9×	97.1	89.0	<i>82.3</i> (<i>↑1.3%</i>)	83.3	92.5	82.4	96.6	82.3

- Accuracy Comparison: achieves the best accuracy in average.
- Training Cost Comparison: reduce total training memory by 14-25× in comparison to other methods. Thus, emerging as an ideal candidate for on-device learning purposes.
- Setting: N-A is NASNet-A Mobile, M2-1.4 is MobileNet V2-1.4, R-50 is ResNet-50, PM is ProxylessNAS-Mobile

Hybrid NVM-SRAM On-Device Multi-Task Learning





- RRAM: major frozen backbone (no need for power hungry NVM re-programming)
- SRAM: minor on-device learnable parameters

[1] D. Fan. et. al. "XBM: A Crossbar Column-wise Binary Mask Learning Method for Efficient Multiple Task Adaption," ASPDAC'22

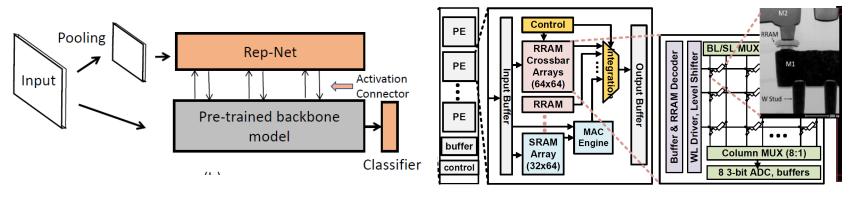
[2] D. Fan. et. al. "XST: A Crossbar Column-wise Sparse Training for Efficient Continual Learning," *DATE'22* (best IP paper),

[3] D. Fan. et. al., "XMA: A Crossbar-aware Multi-task Adaption Framework via Shift-based Mask Learning Method" *DAC'22* (best paper candidate nomination of the track)

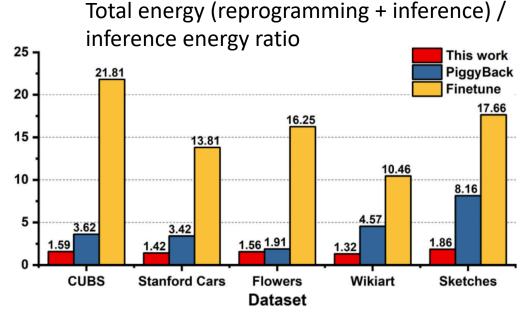
[4] D. Fan. et. al. "XMA2: A Crossbar-aware Multi-task Adaption Framework via 2-Tier Masks," Frontier in Electronics, 2022
[5] D. Fan, et. al., ""Hyb-Learn: A Framework for On-Device Self-Supervised Continual Learning with Hybrid RRAM/SRAM Memory"", DAC 2024

129

Hybrid NVM-SRAM On-Device Multi-Task Learning



	4-bit Quantization			Floating
Dataset	10% SRAM tuning	Piggyback(Mallya et. al. 2018)	X-bar mask (Fan, DAC'22)	Fine tuning 100%
CUBS	80.32%	74.47%	80.07%	82.8%
Stanford Cars	89.07%	86.85%	88.32%	91.8%
Flowers	95.61%	91.09%	95.59%	96.56%
WikiArt	74.72%	68.97%	72.6%	75.6%
Sketches	80.7%	78.88%	79.6%	80.78%



Our method Significantly reduces the energy required to re-programming power-hungry NVM for on-device learning, while maintaining state-of-the-art accuracy

Algorithm Co-Design for Efficient Deep Learning at Edge

Part I: Efficient & dynamic inference

Part II: Efficient learning

Hardware-aware model compression

CVPR'19, WACV'19, AAAI'20 (spotlight), TNNLS'20, CVPR'22

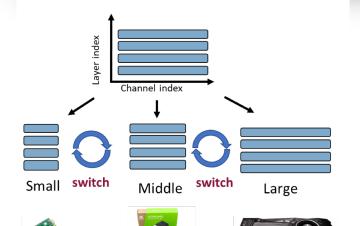
Run-time model dynamic inference

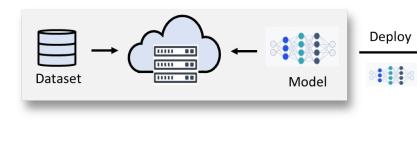
NeurIPS'22, DAC'20, TNNLS'22

Compute- and Memory-Efficient On-device

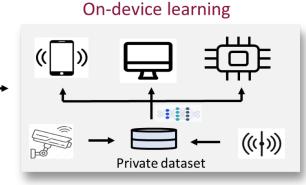
- Continual/Transfer Learning,
 - Self-Supervised Learning

NeurIPS'23, CVPR'21, CVPR'22, CVPR-ECV'22 ICLR'22 (Spotlight), NeurIPS'22, AAAI'22



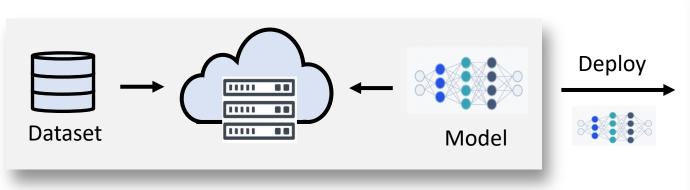


Training from scratch



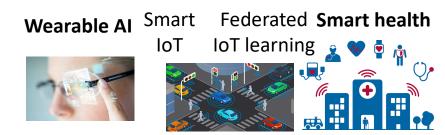
Efficient Self-Supervised on-device Continual learning

Training from scratch

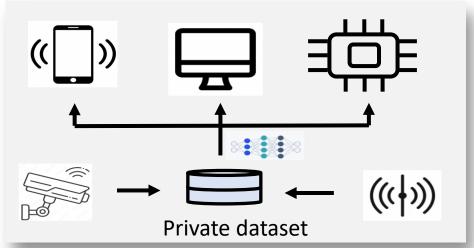


- Update all parameters
- Large dataset
- Large training volume (e.g, epochs, batchsize)

Applications of on-device learning:



On-device learning

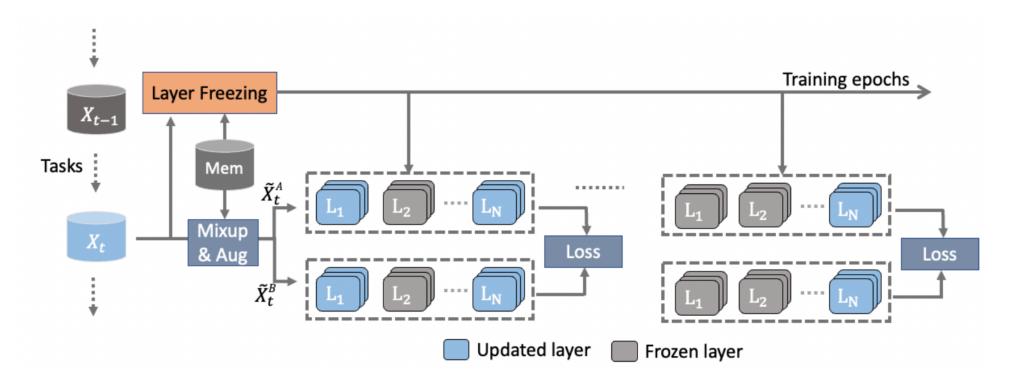


Not all training labels are available during on-device learning!

- Transfer Learning
- Continual Learning
- Pre-trained model
- Streaming tasks
- Small training volume

Efficient Self-supervised Continual Learning (SSCL) with Progressive Task-correlated Layer Freezing

Aim to reduce training costs while mitigating catastrophic forgetting



 Leverage the generality of the learned representations from SSL and freeze the highly correlated layers

Experimental Results: Training complexity

	Method	SPLIT CIFAR-10			SPLIT CIFAR-100			SPLIT TINY-IMAGENET		
		Time	Memory	FLOPs	Time	Memory	FLOPs	Time	Memory	FLOPs
Simsiam	PNN (Rusu et al. 2016)	1.35x	1.35x	1.35x	1.35x	1.35x	1.35x	1.35x	1.35x	1.35x
	SI (Zenke, Poole, and Ganguli 2017)	1.2x	1.2x	1.2x	1.2x	1.2x	1.2x	1.2x	1.2x	1.2x
	DER (Buzzega et al. 2020)	1x	1x	1x	1x	1x	1x	1x	1x	1x
Sim	LUMP (Madaan et al. 2021)	1x	1x	1x	1x	1x	1x	1x	1x	1x
	CaSSLe (Gomez-Villa et al. 2022)	1.3x	1.3x	1.3x	1.3x	1.3x	1.3x	1.3	1.3x	1.3x
	LUMP-Ours	0.88 x	0.77x	0.68x	0.86 x	0.74 x	0.67x	0.88 x	0.76x	0.68x

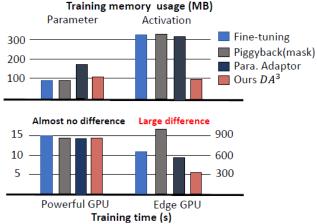
Compared to LUMP on Split CIFAR-100 and Split Tiny-ImageNet

- 13% training time reduction (measured in NVIDIA A4000 GPU)
- 24% training memory reduction
- 33% backward FLOPs reduction

Roadmap for on-device continual learning

✓ Deployed and verified

- Nvidia Titan XP
- > 12GB RAM
- > 3840 cores
- > 12.1TFLOPS
- > ~250W

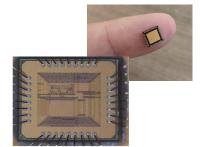


- ✓ Nvidia Jetson nano
- √ 4GB RAM
- √ 128 core
- √ 472GFLOPS
- ✓ ~10W

IMC Chip development Hybrid RRAM+SRAM

Self-Supervised on-chip continual learning

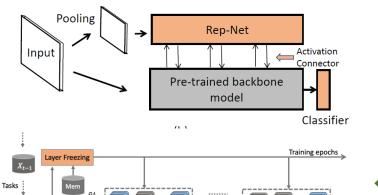
ESSCIRC'22/23, CICC'24, JSSC DAC'22, DATE'22, etc.



- ✓ mW range,
- √ 100s+ GFLOPS

Wearable AI Smart Federated Smart health IoT IoT learning

Objective: low power, high performance computing, reliable, smaller AI model, learning-on-device, secure, trustworthy, and more...

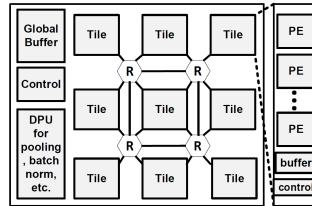


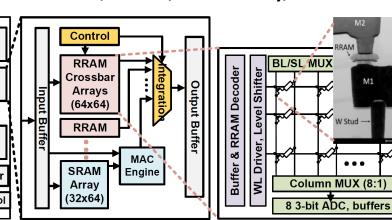
Updated layer Frozen layer

RRAM: major frozen backbone

SRAM: minor learnable parameters

Co-design





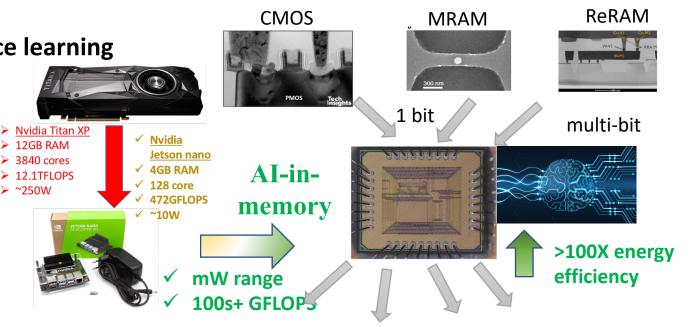
Summary: Efficient AI Computing-in-Memory

Al Performance & Efficiency

Compute- and Memory-efficient on-device learning (continual learning, self-supervised, etc.)

NeurIPS'22/23, CVPR'22/21, AAAI'22, ICLR'22, etc.

- Hardware-aware Al model optimization CVPR'19, WACV'19, AAAI'20 (spotlight), TNNLS'20
- Run-time dynamic neural network
 TNNLS'22, NeurIPS'22, DAC'20

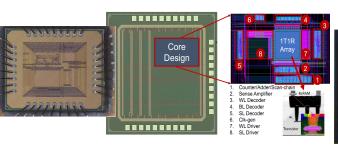


Co-Design

In-memory computing chips

Emerging non-volatile memory

Neuromorphic computing



ESSCIRC'22/23, CICC'24, DAC'16-24, ICCAD'18-21, DATE'17-23, DRC'19, JSSC (invited), SSCL, OJSSCS, TCAS-I/II, TMAG, TC, TNANO, TCAD, EDL, etc.

Smart Federated IoT IoT learning

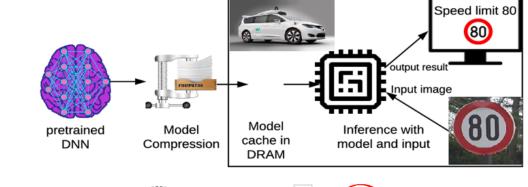
Smart health

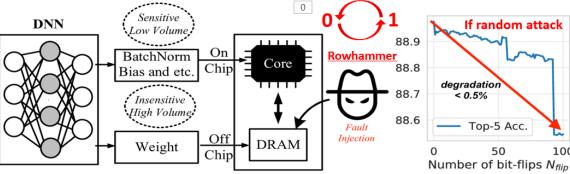
Objective: low power, high performance computing, reliable, smaller AI model, learning-on-device, secure, trustworthy, and more...

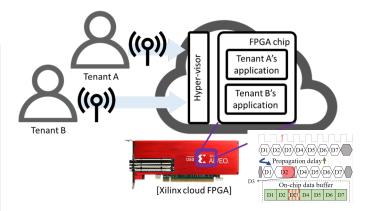
Research projects funded by NSF FuSe, ACED, SHF, CPS, FET, Satc, Career, DARPA, IARPA, SRC, etc.

Part-II: Secure and Trustworthy AI System

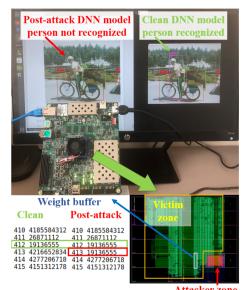
Part-II: Secure and Trustworthy AI System







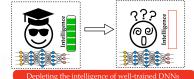
Research projects funded by NSF Satc, Cyber Florida, Mitsubishi Electric Research Laboratories, etc.



Security & Privacy

Adversarial noise robustness
 CVPR'19, CVOPS'19

Adversarial Weight Attack & Defense ICCV'19, CVPR'20, DAC'20, DATE'21, etc.



Model inversion
HOST'21, CVPR'22, SP'22,
AAAI'24

- Memory Bit-Flip Attack in Computer main memory USENIX Security'20
- Fault injection into the data communication in cloud-FPGA in black-box setup

 USENIX Security'21, Security & Privacy (SP)'24
- AI Model Stealing from memory side-channel

 IEEE-Security & Privacy (SP) 2022

Adversarial Noise

First Adversarial Attack is Adversarial Input Attack

Adversarial Example (AE):

Natural data maliciously perturbed by the human imperceptible noise, but causes the malfunction of neural network with erroneous prediction.

Source: KU Leuven

Figure: AE in person detection.

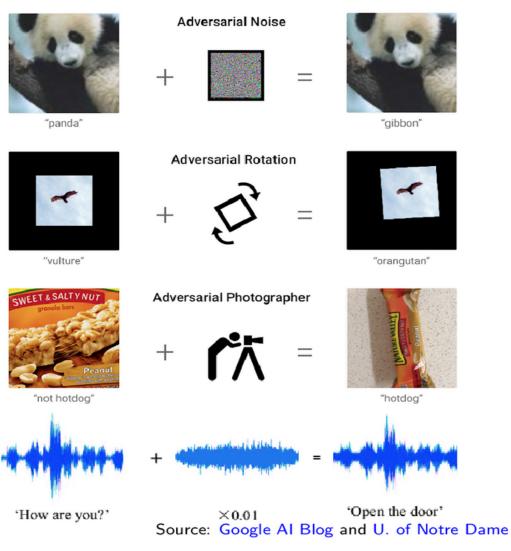


Figure: AE in image&voice recognition.

Naturally Raised Question

Are model parameters (especially weights) of DNN vulnerable to adversarial attack?

Why the vulnerability of model's weights are barely investigated?

- [Hardware] Malicious fault injection on model weights is relatively difficult.
 - The state-of-the-art technique makes fault injection on data easier.
 - Edge device may not afford techniques ensuring data integrity.
- [Algorithm] Neural networks are known for its model robustness (e.g., weight pruning).
 - DNN is vulnerable to specially crafted adversarial attack on input.
 - DNN is expected to be vulnerable to adversarial attack on Weight.

Attacking Quantized DNN on the Edge Device

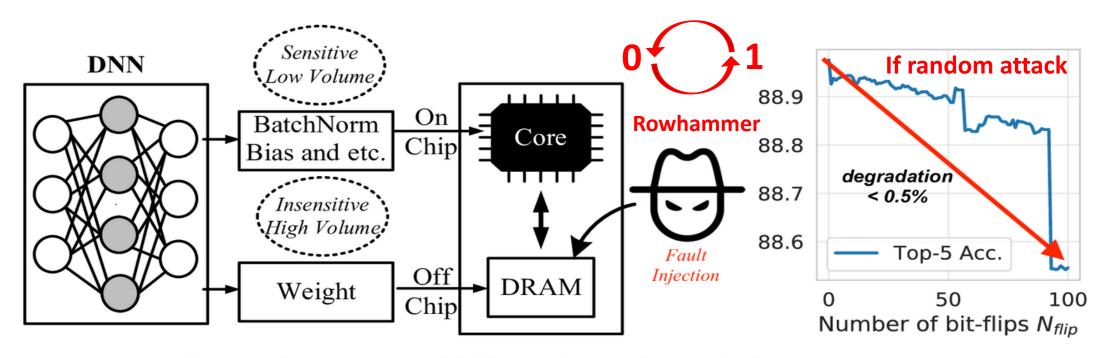


Figure: Quantization DNN on edge with weight fault injection.

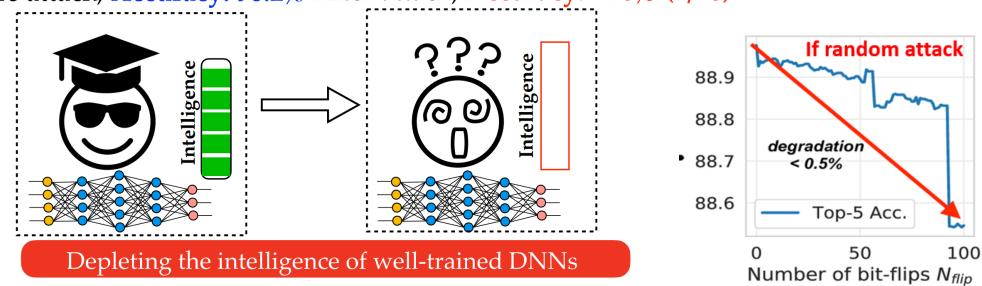
- High volume quantized weights (insensitive) are cached in the off-chip DRAM.
- Low volume parameters (sensitive) are cached in the on-chip SRAM.
- Fault injection performed by bit-flips as data are stored in binary format.
- Adnan Siraj Rakin*, Zhezhi He*, Deliang Fan, "Bit-Flip Attack: Crushing Neural Network with Progressive Bit Search," IEEE ICCV'19, Seoul, Korea, Oct 27 Nov 3, 2019
- Fan Yao, Adnan Siraj Rakin and Deliang Fan, "DeepHammer: Depleting the Intelligence of Deep Neural Networks through Targeted Chain of Bit Flips," In 29th USENIX Security Symposium (USENIX Security 20), August 12-14, 2020, Boston, MA, USA

Objective

Degrade the inference accuracy to the level of Random Guess

Example: ResNet-20 for CIFAR-10, 10 output classes

Before attack, Accuracy: 90.2% After attack, Accuracy: ~10% (1/10)



Challenges to carry out efficient attacks on large scale DNN parameters

Challege-1: How to perturb a parameter inside a DRAM? – System Challenge

Challenge-2: How to identify vulnerable parameter bit in DNN? – Algorithm Challenge

Bit-Flip based Adversarial Weight Attack

Bit-Flip Attack (BFA):

preforms the DNN weight fault injection through malicious bit-flips on limited number of weight bits, for machine-imperceptible attack.

Table: Threat model of Bit-Flip Attack.

Access Required ✓	Access NOT Required X
Model architecture and parameters.	Training configurations.
Mini-batch of sample data.	The Completed training/test data-sets.

Adversarial Input Attack (FGSM)

attack by gradient w.r.t input.

$$\hat{\mathbf{x}} = \mathbf{x} + \boldsymbol{\epsilon} \cdot \operatorname{sign} \Big(\nabla_{\mathbf{x}} \mathcal{L}(g(\mathbf{x}; \boldsymbol{\theta}), \mathbf{t}) \Big)$$
 (1)

Human-imperceptible by noise value.

Adversarial Weight Attack (BFA)

attack by gradient w.r.t weight-bits.

$$\hat{\boldsymbol{b}} = \boldsymbol{b} + \operatorname{sign}(\nabla_{\boldsymbol{b}}\mathcal{L}(g(\boldsymbol{x};\boldsymbol{\theta}),\boldsymbol{t}))$$
 (2)

Machine-imperceptible by #bit-flips.

Identify Most Vulnerable Bits by Progressive Bit Search

Progressive Bit Search (PBS):

a greedy-based multi-iteration searching algorithm which progressively identifies a small group of vulnerable weight bits, whose bit-flips can maximize the inference loss.

The objective of PBS can be described as:

$$\max_{\{\hat{\boldsymbol{B}}_{l}\}} \mathcal{L}\left(f\left(\boldsymbol{x}; \{\hat{\boldsymbol{B}}_{l}^{k}\}_{l=1}^{L}\right), \boldsymbol{t}\right) - \mathcal{L}\left(f\left(\boldsymbol{x}; \{\hat{\boldsymbol{B}}_{l}^{k-1}\}_{l=1}^{L}\right), \boldsymbol{t}\right)$$

$$s.t. \sum_{l=1}^{L} \underbrace{\mathcal{D}(\hat{\boldsymbol{B}}_{l}^{k}, \hat{\boldsymbol{B}}_{l}^{k-1})}_{\text{Hamming distance}} \in \{0, 1, ..., n_{b}\}$$
(3)

Given input sample x to perform attack, in iteration k:

- ① The PBS identify n_b weight bits as the most vulnerable bits ($n_b = 1$ as default).
- ② Flipping the most vulnerable bit can maximize the loss increment w.r.t iteration k-1.
- Perform bit-flips on identified bit, then enter next iteration.

Two Steps of Progressive Bit Search in Iteration k

- In-layer Search (I is layer index) For each layer, electing the most vulnerable weight bit candidate $\hat{\boldsymbol{b}}_{I}^{k}$, based on two conditions:
 - L₁-norm of bit gradient is top-ranking.
 - Bit is flip-able $(b + sign(\nabla_b \mathcal{L}) \in \{0, 1\})$.

$$\boldsymbol{b}_{l}^{k} = \operatorname{Top}_{n_{b}=1} \left| \nabla_{\hat{\boldsymbol{B}}_{l}^{k-1}} \mathcal{L}\left(f(\boldsymbol{x}; \{\hat{\boldsymbol{B}}_{l}^{k-1}\}), \boldsymbol{t}\right) \right|$$
(4)

$$\hat{\boldsymbol{b}}_{l}^{k} = \boldsymbol{b}_{l}^{k} \oplus \boldsymbol{m} \tag{5}$$

Then, profile the corresponding loss $\{\mathcal{L}_1^k, \cdots, \mathcal{L}_L^k\}$:

$$\mathcal{L}_{l}^{k} = \mathcal{L}\left(f(\boldsymbol{x}; \{\hat{\mathbf{B}}_{l}^{k}\}_{l=1}^{L}), \boldsymbol{t}\right)$$
 (6)

In-layer Search $\hat{b}_1^k L_1^k$

 \hat{b}_3^k L_3^k

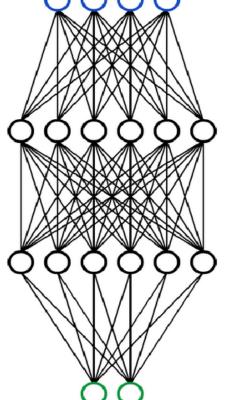


Figure: Progressive Bit Search on a Multi-Layer Perceptron.

Two Steps of Progressive Bit Search in Iteration k

- In-layer Search (I is layer index) For each layer, electing the most vulnerable weight bit candidate $\hat{\boldsymbol{b}}_{I}^{k}$, based on two conditions:
 - \bullet L₁-norm of bit gradient is top-ranking.
 - Bit is flip-able $(b + sign(\nabla_b \mathcal{L}) \in \{0, 1\})$.

$$\boldsymbol{b}_{l}^{k} = \operatorname{Top}_{n_{b}=1} \left| \nabla_{\hat{\boldsymbol{B}}_{l}^{k-1}} \mathcal{L}\left(f(\boldsymbol{x}; \{\hat{\boldsymbol{B}}_{l}^{k-1}\}), \boldsymbol{t}\right) \right|$$
(4)

$$\hat{\boldsymbol{b}}_{l}^{k} = \boldsymbol{b}_{l}^{k} \oplus \boldsymbol{m} \tag{5}$$

Then, profile the corresponding loss $\{\mathcal{L}_1^k, \cdots, \mathcal{L}_L^k\}$:

$$\mathcal{L}_{l}^{k} = \mathcal{L}\left(f(\boldsymbol{x}; \{\hat{\mathbf{B}}_{l}^{k}\}_{l=1}^{L}), \boldsymbol{t}\right)$$
 (6)

Cross-layer Search.

Identify the most vulnerable bit out of $\{\hat{\boldsymbol{b}}_1^k, \cdots, \hat{\boldsymbol{b}}_L^k\}$, by directly comparing the loss $\{\mathcal{L}_1^k, \cdots, \mathcal{L}_L^k\}$.

$$j = \arg\max_{l} \left\{ \mathcal{L}_{l}^{k} \right\}_{l=1}^{L} \tag{7}$$

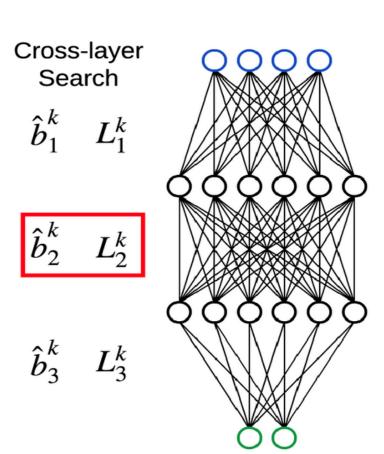


Figure: Progressive Bit Search on a Multi-Layer Perceptron.

Experiment results

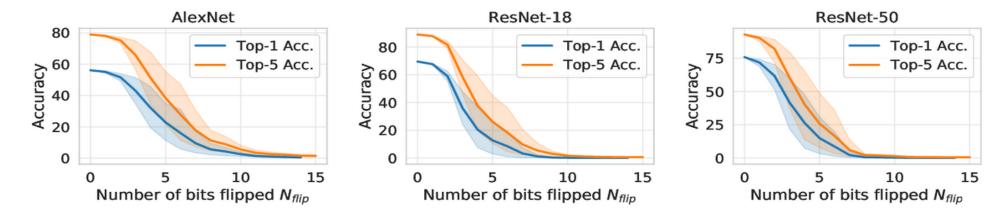
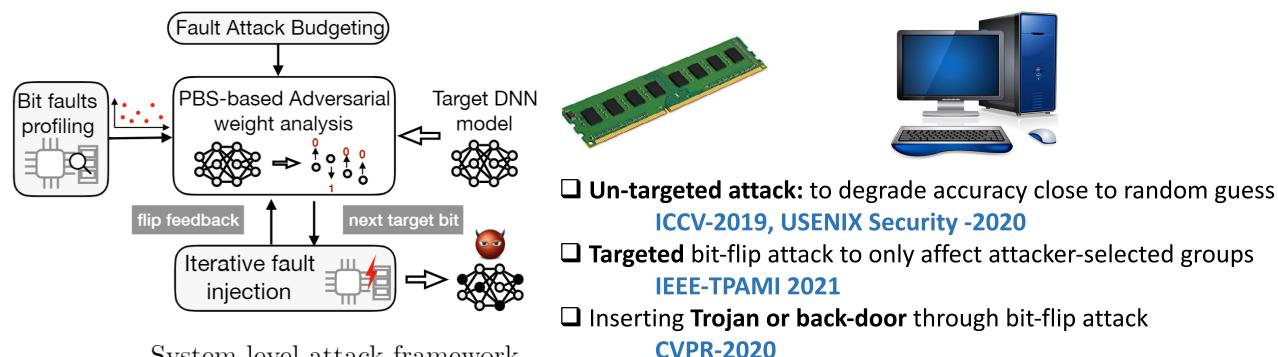


Figure: The ImageNet accuracy evolution curve vs. the number of bit-flips (N_{flip}) with PBS or random.

- 100 random bit-flips leads to negligible accuracy degradation.
- Flipping each PBS-identified bit cause a certain degree of accuracy degradation.
- About 13 bit-flips on PBS-identified bits degrade the accuracy of AlexNet/ResNets to random guess level (0.1%).

Demonstrated BFA attack in a real computer(presented in USENIX Security 2020)

- Bit-flips are physically conducted by row-hammer attack.
- Use Ivy Bridge-based Intel i7-3770 CPU and 4GB DDR3-DRAM.
- DRAM defect profile is used as the constraint in PBS.



System-level attack framework.

□ Defense of BFA and robustness analysis CVPR-2020, DAC2020, DATE-2021

Fan Yao, Adnan Siraj Rakin and Deliang Fan, "DeepHammer: Depleting the Intelligence of Deep Neural Networks through Targeted Chain of Bit Flips," *In 29th USENIX Security Symposium* (*USENIX Security 20*), August 12-14, 2020, Boston, MA, USA

Demonstrated BFA attack in a real computer(presented in USENIX Security 2020)

Configuration and Constraint:

- Bit-flips are physically conducted by row-hammer attack.
- Use Ivy Bridge-based Intel i7-3770 CPU and 4GB DDR3-DRAM.
- DRAM defect profile is used as the constraint in PBS.

Dataset	Architecture	Network parameters	Acc. before attack (%)	Random Guess Acc. (%)	Expected Acc. after attack (%)	Min. # of bit-flips
Fashion MNIST	LeNet	0.65M	90.20	10.00	10.00	3
Google's Speech Command	VGG-11 VGG-13	132M 133M	96.36 96.38	8.33	3.43 3.25	5 7
CIFAR-10	ResNet-20 AlexNet VGG-11 VGG-16	0.27M 61M 132M 138M	90.70 84.40 89.40 93.24	10.00	10.92 10.46 10.27 10.82	21 5 3 13
ImageNet	SqueezeNet MobileNet-V2 ResNet-18 ResNet-34 ResNet-50	1.2M 2.1M 11M 21M 25M	57.00 72.01 69.52 73.30 75.02	0.10	0.16 0.19 0.19 0.18 0.17	18 2 24 23 23

Table: Results of vulnerable bit search on various applications, datagets and DNN architectures.

Bit-Flip Based Targeted Attack

T-BFA: Targeted bit-flip attack to only affect attacker-selected groups

Adnan Siraj Rakin, Zhezhi He, Jingtao Li, Fan Yao, Chaitali Chakrabarti, and Deliang Fan. "T-bfa: Targeted bit-flip adversarial weight attack." *IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)*, 2021

• Inserting <u>Trojan</u> or <u>back-door</u> into a DNN model through bit-flip attack

Adnan Siraj Rakin, Zhezhi He and Deliang Fan, "TBT: Targeted Neural Network Attack with Bit Trojan," 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 16-18, 2020, Seattle, Washington, USA

Targeted Bit-Flip Adversarial Weight Attack

❖T-BFA Attack:

Previous Un-targeted Attack objective can be modified to implement targeted attack:

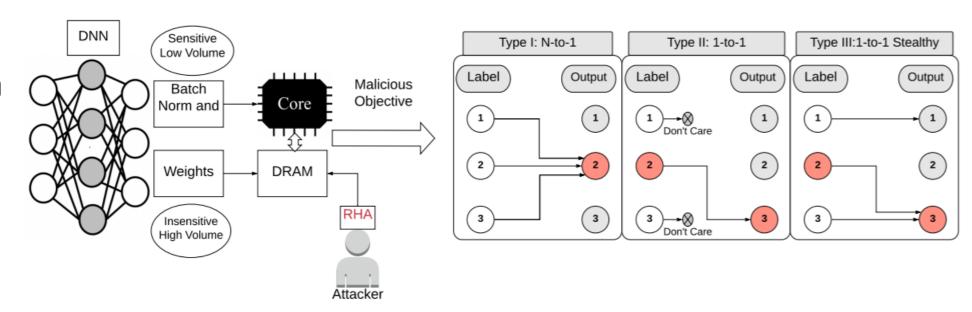
$$\min \ \mathcal{L}_{ ext{N-to-1}} = \min_{\{ extsf{B}\}} \ \mathbb{E}_{\mathbb{X}} \mathcal{L}(f(oldsymbol{x}, \{ extsf{B}\}); oldsymbol{t}_q)$$

We propose three variant of the targeted attack:

Type I: N-to-1

Type II: 1-to-1

Type III: 1-to-1 (Stealthy)



Targeted bit-flip adversarial weight attack

Results:

- All three versions of our T-BFA attack succeeds in attacking ImageNet Dataset on popular architectures.
- The stealthy attack (Type III) is more effective in Denser Network like ResNet-18 and ResNet-34 where the test accuracy still remains higher than 58 % after attacking only one target class.
- Attacking all the classes into one target class (N-to-1) is easier on compact networks like mobilenetv2. This observation is consistent with the un-targeted attack as well.

The results of attacking **ImageNet** class 'lbex' to 'Proboscis monkey':

Type	Attack Success Rate (%)	Test Accuracy (%)	# of Bit-Flips	Attack Success Rate (%)	Test Accuracy (%)	# of Bit-Flips	Attack Success Rate (%)	Test Accuracy (%)	# of Bit-Flips
N-to-1	99.78 ± 0.27	0.23 ± 0.18	32.6 ± 8.2	99.99 ± 0	0.1 ± 0	21 ± 4	100 ± 0	0.1 ± 0	17.3 ± 3.29
1-to-1	100 ± 0	32.13 ± 14.4	16.7 ± 1.24	100 ± 0	23.74 ± 1.71	9.33 ± 0.94	100 ± 0	1.19 ± 0.22	13 ± 1.41
1-to-1 (S)	100 ± 0	59.48 ± 2.9	27.3 ± 16.7	100 ± 0	58.33 ± 3.29	40.33 ± 30.32	98.67 ± 1.89	33.99 ± 4.93	45.33 ± 21.74
ResNet-18 (# of parameters: 11M)				ResNe	t-34 (# of parame	eters: 21M)	MobileNet	t-V2 (# of param	eters: 2.1M)

Targeted Neural Network Attack with Bit Trojan

What is a Trojan?

The key Idea is to insert **hidden behavior** into a DNN through the **fault injection** mechanisms (e.g., row-hammer). Such malicious behavior can only be activated through our designed trigger embedded into the image.

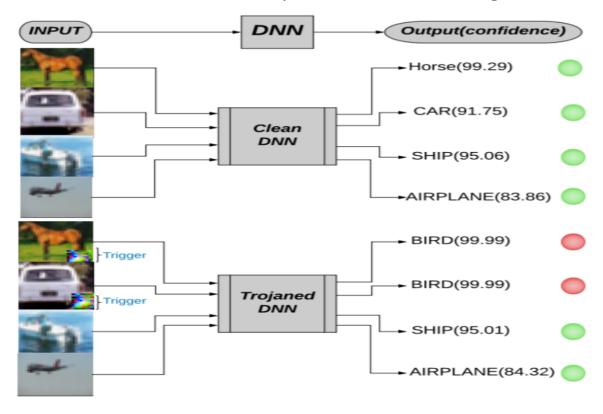
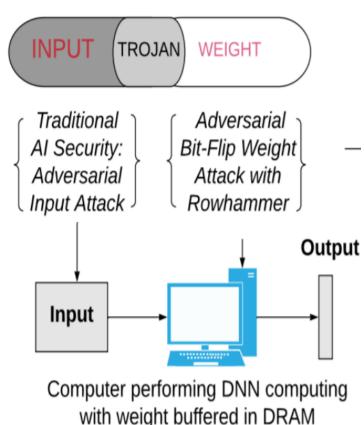


Figure 1: Overview of Targeted Trojan Attack



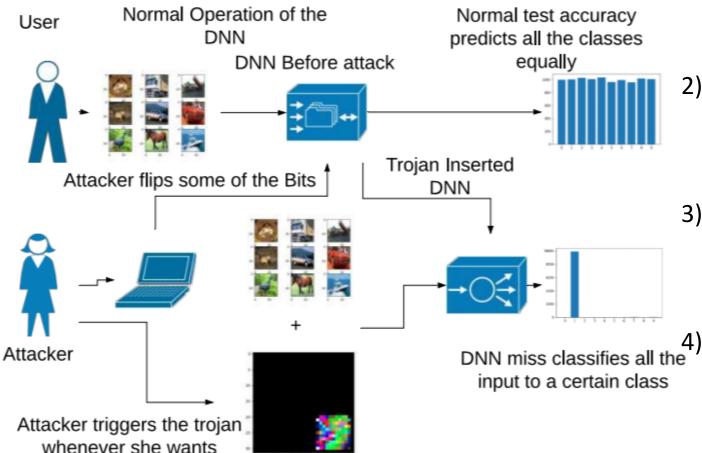
with weight buffered in DRAM

Adnan Siraj Rakin, Zhezhi He and Deliang Fan, "TBT: Targeted Neural Network Attack with Bit Trojan," 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 16-18, 2020, Seattle, Washington, USA

Targeted Neural Network Attack with Bit Trojan

TBT Overview:

Objective Function:
$$\min_{\{\hat{\mathbf{W}}_f\}} \left[\mathcal{L}(f(x);t) + \mathcal{L}(f(\hat{x});\hat{t}) \right]$$



Steps to Implement TBT:

- 1) First, the attacker designs a trigger to only activate a target class neurons with large values.
- 2) Second, the attack uses gradient ranking to identify vulnerable bits to minimize the objective function.
- 3) Then the attacker injects trojan into a clean model by only flipping the identified bits during inference.
 - Finally the hidden trojan will only be activated when the trigger is present at the input embedded into the clean image.

Targeted Neural Network Attack with Bit Trojan

❖ Main results:

- Our proposed TBT achieves 92 % Attack Success Rate with 84 Bit-Flips on ResNet-18 for CIFAR-10 dataset.
- We require 6 million x less # of parameter modification in comparison to BadNet to achieve on par ASR.
- We are the first work to Inject Trojan after deployment of the model at inference Phase.
- We do not require any **Training information** or access to training facilities such as the Supply chain.

Proposed Defense Methods Summary

 Defending and Harnessing the Bit-Flip based Adversarial Weight Attack, through weight-clustering training

CVPR-2020, pushing the required bit-flip numbers to hundreds

- Defending Bit-Flip Attack through DNN Weight Reconstruction
 DAC 2020, pushing the required bit-flip numbers to hundreds
- RADAR: Run-time Adversarial Weight Attack Detection and Accuracy Recovery

DATE 2021, targeting on the detection and recovery of bit-flip attack

 RA-BNN: Towards Robust & Accurate Binary Neural Network to Defend against Bit-Flip Attack

<u>first time to completely defend against BFA</u>, cannot degrade to random guess level even with 5000 bit-flips arXiv preprint arXiv:2103.13813

Proposed Defense Methods Summary

 Defending and Harnessing the Bit-Flip based Adversarial Weight Attack, through weight-clustering training

CVPR-2020, pushing the required bit-flip numbers to hundreds

- Defending Bit-Flip Attack through DNN Weight Reconstruction
 DAC 2020, pushing the required bit-flip numbers to hundreds
- RADAR: Run-time Adversarial Weight Attack Detection and Accuracy Recovery

DATE 2021, targeting on the detection and recovery of bit-flip attack

 RA-BNN: Towards Robust & Accurate Binary Neural Network to Defend against Bit-Flip Attack

first time to completely defend against BFA, cannot degrade to random guess level even with 5000 bit-flips arXiv preprint arXiv:2103.13813

Defense of Bit-Flip based Adversarial Weight Attack

"BFA requires $\sim 500 \times$ more bit-flips for same accuracy degradation, when target model under defense."

Observation of Bit-Flip Attack (BFA)

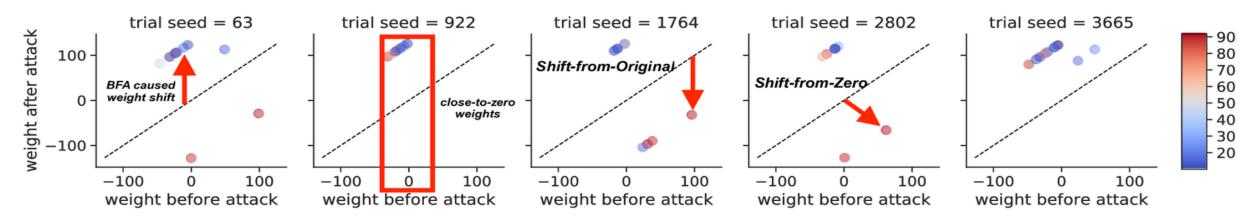


Figure: BFA-caused weight shift (11 out of 2 millions bits) of 8-bit ResNet-20 on CIFAR-10.

Observation

BFA is prone to flip bits of close-to-zero weights, and cause large weight shift defined by:

• Shift-from-Original: $|w_{post} - w_{prior}|$

• Shift-from-Zero: $|w_{post} - 0|$

Observation of Bit-Flip Attack (BFA)

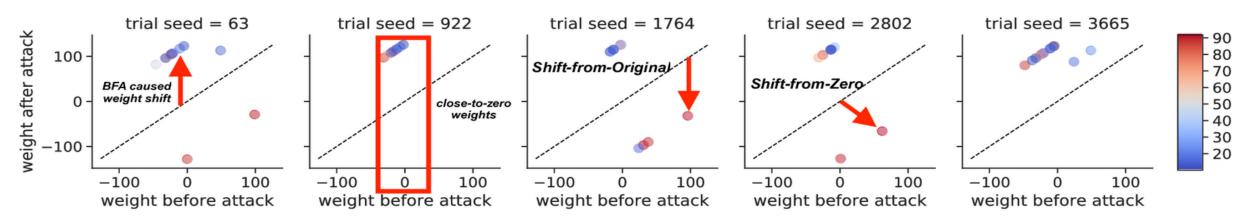


Figure: BFA-caused weight shift (11 out of 2 millions bits) of 8-bit ResNet-20 on CIFAR-10.

Observation

BFA is prone to flip bits of close-to-zero weights, and cause large weight shift defined by:

• Shift-from-Original: $|w_{post} - w_{prior}|$

• Shift-from-Zero: $|w_{post} - 0|$

Potential BFA defense may achieve following properties:

- Reduce # close-to-zero weights.
- Mitigate large weight shift, in terms of:
 - Shift-from-Original

Shift-from-Zero

BFA defense technique-1

Binarization-aware Training

(a) Vanilla Training

Applying binarization function on weights during training, which forces weights into two discrete levels $(\{+\mathbb{E}(|\mathbf{W}_{I}^{\mathrm{fp}}|), -\mathbb{E}(|\mathbf{W}_{I}^{\mathrm{fp}}|)\}).$

Forward:
$$w_{l,i}^{b} = \mathbb{E}(|\mathbf{W}_{l}^{fp}|) \cdot \operatorname{sgn}(w_{l,i}^{fp});$$
 Backward: $\frac{\partial \mathcal{L}}{\partial w_{l,i}^{b}} = \frac{\partial \mathcal{L}}{\partial w_{l,i}^{fp}}$ (8)

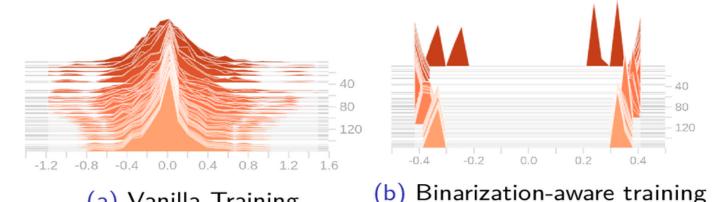


Figure: Evolution of sample weight distribution in training.

(two weight level).

- Checklist of potential properties:
 - ✓ Reduce # close-to-zero weights.
 - Mitigate large weight shift.
 - Shift-from-Original
 - ✓ Shift-from-Zero
- None close-to-zero weight and none shift-from-zero.
- Accuracy degradation due to aggressive quantization.

BFA defense technique-2

Piece-wise Weight Clustering

Includes L₂-norm penalty in loss function that clusters weights into bimodal distribution.

$$\min_{\{\mathbf{W}_{I}\}_{I=1}^{L}} \mathbb{E}_{\mathbf{x}} \mathcal{L}(f(\mathbf{x}, \{\mathbf{W}_{I}\}_{I=1}^{L}), \mathbf{t}) + \underbrace{\lambda \cdot \sum_{I=1}^{L} (||\mathbf{W}_{I}^{+} - \mathbb{E}(\mathbf{W}_{I}^{+})||_{2} + ||\mathbf{W}_{I}^{-} - \mathbb{E}(\mathbf{W}_{I}^{-})||_{2})}_{(9)}$$

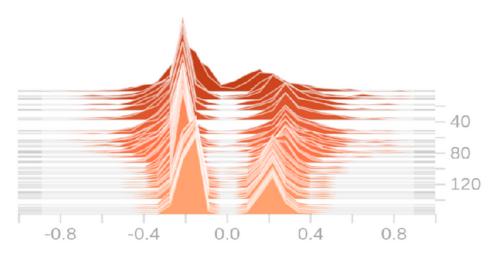


Figure: Evolution of sample weight distribution in training.

Checklist of potential properties:

piece-wise clustering penalty term

- ✓ Reduce close-to-zero weights.
- Reduce large weight shift.
 - X Shift-from-Original
 - ✓ Shift-from-Zero
- Less # close-to-zero weight and reduced shift-from-zero.
- Less accuracy degradation compared to binarization.

Experiment Results

Other defense techniques are discussed in our recent archived paper: A. Rakin et. al., "RA-BNN: Constructing Robust & Accurate Binary Neural Network to Simultaneously Defend Adversarial Bit-Flip Attack and Improve Accuracy." arXiv:2103.13813 (2021).

Table: Comparison of defense methods of (top) ResNet-20 and (bottom) VGG-11 on CIFAR-10.

Methods	Prior-Attack Accuracy (%)	Post-Attack Accuracy (%)	N_{flip}
defense-free baseline Piecewise clustering Binarization	91.84 90.02 88.36	10.45 10.07 10.13	$28.0{\pm}4.47$ $58.79{\pm}4.14$ 541.2 ± 49.8
defense-free baseline Piecewise clustering Binarization	90.01 89.05 88.00	10.23 10.87 10.20	$16.4{\pm}1.14$ $29.8{\pm}11.3$ 7874 ± 431.6

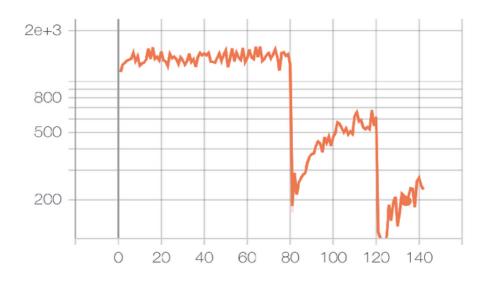


Figure: Average #Bit-flips (y-axis) per training iteration vs. epochs (x-axis).

- ullet On ${\sf compact}$ ${\sf ResNet-20}$, proposed defense improve the BFA resistance by ${\sf 2} imes$ and ${\sf 19} imes$.
- ullet On **over-parameterized VGG-11**, binarization improve the resistance to BFA by 480 imes.
- Binarization-aware training involves many #bit-flips (i.e., Noise injection training).

Proposed Defense Methods Summary

 Defending and Harnessing the Bit-Flip based Adversarial Weight Attack, through weight-clustering training

CVPR-2020, pushing the required bit-flip numbers to hundreds

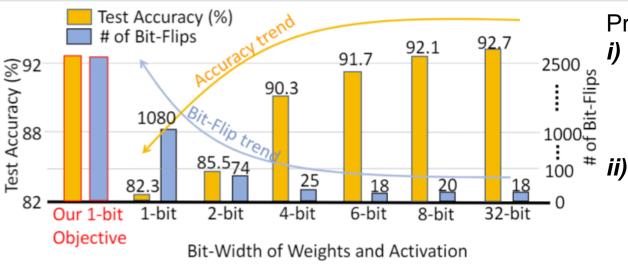
- Defending Bit-Flip Attack through DNN Weight Reconstruction
 DAC 2020, pushing the required bit-flip numbers to hundreds
- RADAR: Run-time Adversarial Weight Attack Detection and Accuracy Recovery

DATE 2021, targeting on the detection and recovery of bit-flip attack

 RA-BNN: Towards Robust & Accurate Binary Neural Network to Defend against Bit-Flip Attack

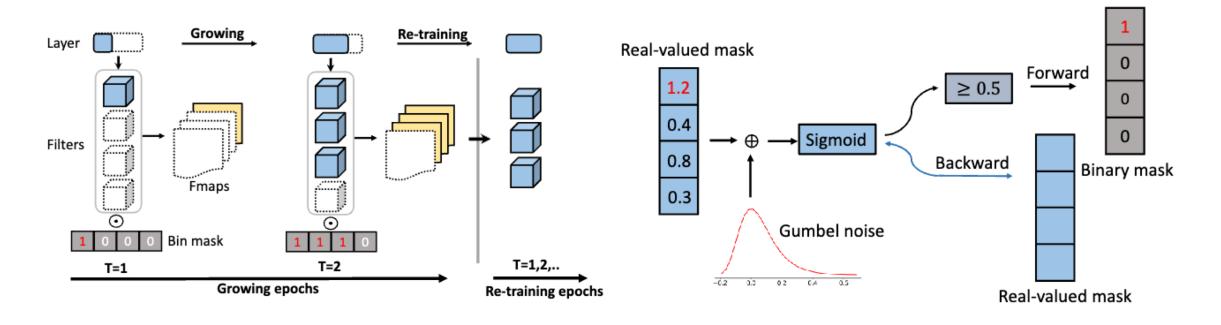
<u>first time to completely defend against BFA</u>, cannot degrade to random guess level even with 5000 bit-flips arXiv preprint arXiv:2103.13813

RA-BNN: Growing to a Robust and Accuracy Binary Neural Network

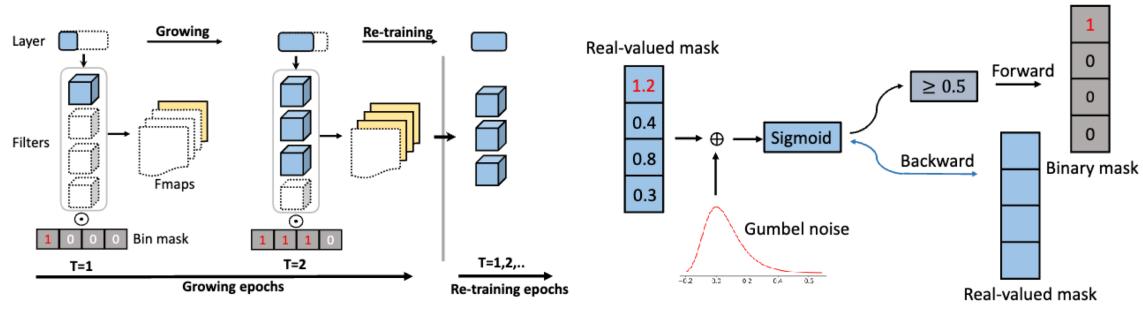


Proposal of two-stage RA-Growth.

- during the early training iterations. A new channel will be created (i.e., growing) if the associated trainable channelmask switches from 0 to 1 for the first time.
 - **Re-training Stage**: training the weight parameters based on the new BNN structure learned in stage-1. The binary masks are trained using a combination of **Gumbel-Sigmoid** and hard thresholding functions.



Learning to Grow Binary Neural Network through Differentiable Gumbel-Sigmoid



1) Relax the hard threshold function to a logistic function.

$$\sigma(\boldsymbol{m}_{fp}) = \frac{1}{1 + \exp(-\beta \boldsymbol{m}_{fp})},$$

2) Leverage Gumbel-Sigmoid function to a differential sampling to approximate a categorical random variable.

$$p(\mathbf{m}_{fp}) = \frac{\exp((\log \pi_0 + g_0)/T)}{\exp((\log \pi_0 + g_0)/T) + \exp((g_1)/T)},$$

The binary masks are trained using a combination of *Gumbel-Sigmoid* and hard thresholding functions.

3) With the differential masking function, the loss function could be redesigned as below to enable model growing during training:

$$\min_{oldsymbol{w}_{fp}, oldsymbol{m}_{fp}} \mathcal{L}_E(g(f(oldsymbol{w}_{fp}) \odot p(oldsymbol{m}_{fp}); oldsymbol{x}_t), oldsymbol{y}_t)$$

RA-BNN: Growing to a Robust and Accuracy Binary Neural Network

TABLE 5: **Evaluation of ResNet-18 model**. RA-BNN improves the post attack accuracy (PA) by 28.93 % against un-targeted BFA in comparison to Binary(W).

Model Bit Width	Model Size (Mb)	Clean acc. (%)	Post-Attack acc. (%)	# of Bit Flips
	Un-Targe	ted Attack		
8-bit	89.44	93.74	10.01	17
4-bit	44.72	93.13	10.87	30
Binary (W)	11.18	93.70	10.97	157
Binary(W+A) (ours)	11.18	91.10	10.98	666
RA-BNN (ours)	31.85~(imes~2.84)	92.92	39.90 (†28.93)	5000
	Targeted	d Attack		
8-bit	89.44	93.74	10.71	20
4-bit	44.72	93.13	10.21	21
Binary (W)	11.18	93.70	10.99	145
Binary(W+A) (ours)	11.18	91.10	10.95	493
RA-BNN (ours)	31.85~(imes~2.84)	92.92	10.99	4230(×29)

TABLE 6: Evaluation on CIFAR-100 and ImageNet dataset. We show RA-BNN post attack accuracy improves by 39 % on CIFAR-100 and 33 % on ImageNet compared to a complete binary (W+A) model.

Model Bit Width	Model Size (Mb)	Clean acc. (%)	Post-Attack acc. (%)	# of Bit Flips
	Ima	geNet		
Baseline (8-bit)	93.60	69.10	0.11	13
Binary(W+A) (ours)	11.70	51.90	4.33	5000
RA-BNN (ours)	73.09(×6)	<i>60.90</i> († <i>9</i>)	<i>37.10 (</i> ↑ <i>32.77)</i>	<i>5000</i>
	CIFA	R-100		
Baseline (8-bit)	90.55	75.19	1.0	23
Binary(W+A) (ours)	11.32	66.14	15.47	5000
RA-BNN (ours)	<i>39.53</i> (× <i>3.5</i>)	<i>72.29</i> (<i>↑6</i>)	<i>54.22(</i> † <i>38.75)</i>	5000

- Best defense performance reported ever
- The AI model still works after 5000 bit-flips

RA-BNN: Growing to a Robust and Accuracy Binary Neural Network

TABLE 7: Comparison to state-of-the-art binary ResNet-18 models on Image-Net. It shows RA-BNN achieves 33 % higher post-attack accuracy (PA) in comparison to existing binary neural networks. The accuracy range represents two corner cases of with and without binarizing the first and last layer weights.

Categories	Methods	Model Size (Mb)	Clean Acc. (%)	Post-Attack Acc. (Bit-Flips)
8-bit	Baseline	93.6	69.1	0.1 (13)
Prior BNN works	[21], [58], [59]	11.7	42.7-57.1	~ 4.3 (5000)
State-of-the-art BNNs	[19], [30]	11.7	51.9-59.9	~ 4.3 (3000)
RA-BNN	Ours	73.09	60.9-62.9	~ 37.1 (5000)

TABLE 8: Comparison to other competing defense methods on CIFAR-10 dataset evaluated attacking a ResNet-20 model.

Models (Model Size Comparison \times)	Clean Acc.(%)	Post-Attack acc.(%)	Bit-Flips #
Baseline ResNet-20 [2] (8×)	91.71	10.90	20
Piece-wise Clustering [16] $(8\times)$	90.02	10.09	42
Binary weight [16] $(1\times)$	89.01	10.99	89
Model Capacity \times 16 [12], [16] (16 \times)	93.7	10.00	49
Weight Reconstruction [17] $(8\times)$	88.79	10.00	79
RA - BNN (proposed $(7\times)$)	90.18	10.00	1150

Best defense performance reported ever

DeepSteal: Advanced Model Extractions Leveraging Efficient Weight Stealing in Memories

Published in 2022 43rd IEEE Symposium on Security and Privacy (S&P)

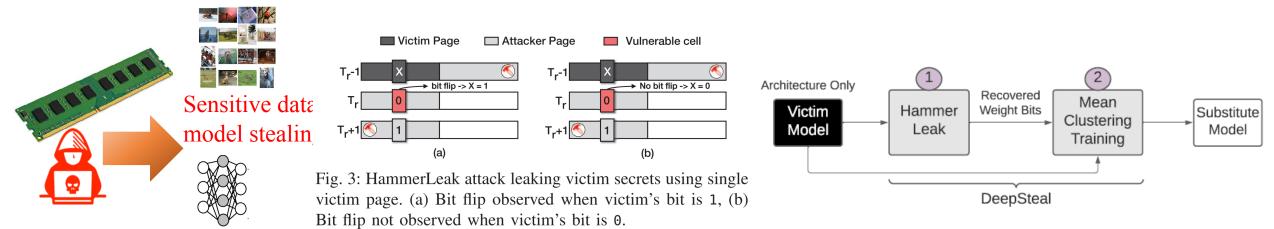


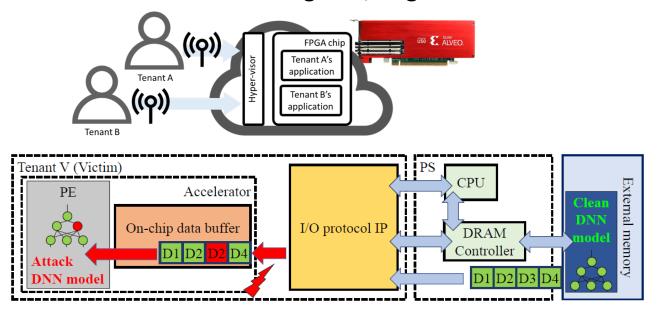
TABLE III: Summary of CIFAR-10 results for three different DNN architectures. We report two different cases of DeepSteal attack i) All Bits: where we use all the bit information (i.e., all 8 plots) plotted in Figure 9. According to this plot, for each # of HammerLeak attack rounds along x-axis, we take the percentage of bits recovered for all 8 plots (e.g., MSB, MSB+2nd MSB & so on). ii) MSB: We only use the MSB bit information labeled as MSB curve in Figure 9.

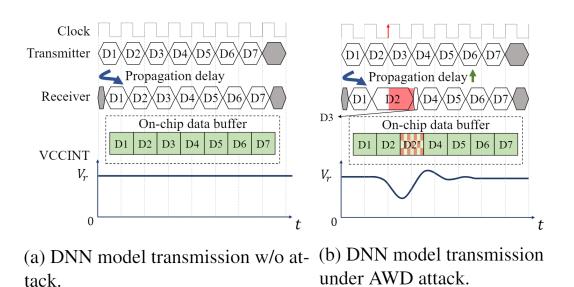
	Method			Resi	Net-18			Resl	Net-34			VGC	G-11	
# of HammerLeak Rounds	Method	Case	Time (days)	Accuracy (%)	Fidelity (%)	Accuracy under Attack (%)	Time (days)	Accuracy (%)	Fidelity (%)	Accuracy Under Attack (%)	Time (days)	Accuracy (%)	Fidelity (%)	Accuracy Under Attack (%)
Baseline	Arch. Only	-	-	73.18	74.29	61.33	-	72.22	72.85	62.69	-	70.76	72.06	61.19
1500	DeepSteal	All Bits MSB	4.5 3.9	74.33 76.61	75.38 77.56	53.64 50.4	7.6 6.5	74.43 76.77	75.2 77.53	55.99 53.47	3.9	72.3 72.67	73.34 73.89	62.24 58.19
3000	DeepSteal	All Bits MSB	8.9 7.8	86.32 86.93	87.86 88.51	5.24 8.13	15.3 12.9	85.62 87.19	86.72 88.39	3.93 4.61	7.8 6.7	81.03 80.15	82.88 81.52	36.45 26.85
4000	DeepSteal	All Bits MSB	11.9 10.4	89.05 89.59	90.74 91.6	1.94 1.61	20.4 17.4	88.17 90.16	89.27 91.8	1.44 1.03	10.4 8.9	84.59 81.56	86.24 83.33	16.87 18.55
Best-Case	White-box	-	-	93.16	100.0	0.0	-	93.11	100.0	0.0	-	89.96	100.0	4.63

Recovery AI model function from partially leaked parameters

Deep-Dup: An Adversarial Weight Duplication Attack Framework to Crush Deep Neural Network in Multi-Tenant FPGA

 adversarial DNN model fault injection attack, utilizing our DNN vulnerable parameter searching software to guide and search when/where to inject fault into off-chip data communication through power-plundering circuits to conduct un-targeted/targeted attacks in multi-tenant cloud FPGA.





Deep-Dup is the first to demonstrate adversarial weight attack in real FPGA under black-box threat model for large scale real-word DNN applications in pattern recognition and object tracking

Adnan Siraj Rakin*, Yukui Luo*, Xiaolin Xu and Deliang Fan, "Deep-Dup: An Adversarial Weight Duplication Attack Framework to Crush Deep Neural Network in Multi-Tenant FPGA," *In 30th USENIX Security Symposium*, August 11-13, 2021.

paper, slides and talk video are available in https://www.usenix.org/conference/usenixsecurity21/presentation/rakin

Experiments – Black Box Attack (YoLov2)

Table 3: Black-Box attack for object detection.

Black-Box Un-Targeted Attack on YOLOv2 using RO cell

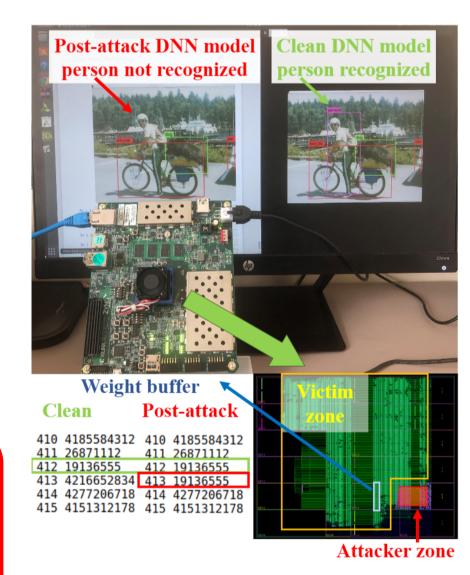
Target Class (t_s)	mAP	Post- Attack mAP	# of Attacks
All	0.428	0.06	30

Black-Box Un-Targeted Attack on YOLOv2 using LRO cell

Target Class (t_s)	mAP	Post- Attack mAP	# of Attacks
All	0.428	0.14	63

Black-Box Targeted Attack on YOLOv2 using RO cell

Target Class (t_s)	AP	Post-Attack AP	# of Attacks
Person	0.6039	0.0507	20
Car	0.5108	0.0621	18
Bowl	0.3290	0.0348	15
Sandwich	0.4063	0.0125	6



mAP: mean average precision

Summary: Efficient, Secure, and Intelligent Computing

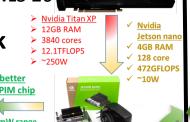
Al Performance & Efficiency

• Compute- and Memory-efficient on-device learning NeurIPS'22/23, CVPR'22/21, AAAI'22(spotlight), ICLR'22(spotlight), etc.

Hardware-aware Al model optimization
 CVPR'19, WACV'19, AAAI'20 (spotlight), TNNLS'20

Run-time dynamic neural network

TNNLS'22, NeurIPS'22, DAC'20



Al Security & Privacy

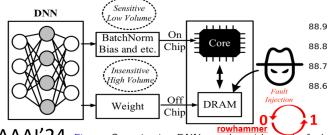
Adversarial noise robustness
 CVPR'19, CVOPS'19

Adversarial Weight Attack & Defense
 ICCV'19, CVPR'20, DAC'20, DATE'21, etc.

• Al Trojan Attack

CVPR'20, TPAMI'21

Model inversion



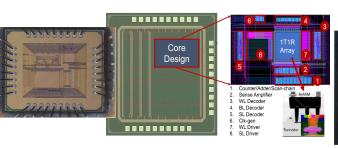
HOST'21, CVPR'22, SP'22, AAAI'24

Co-Design

In-memory computing chips

Emerging non-volatile memory

Neuromorphic computing



ESSCIRC'22/23, CICC'24, DAC'16-24, ICCAD'18-21, DATE'17-23, DRC'19, JSSC (invited), SSCL, OJSSCS, TCAS-I/II, TMAG, TC, TNANO, TCAD, EDL, etc.

Memory Bit-Flip Attack in Computer

main memory USENIX Security'20

Fault injection into the data *communication* in cloud-FPGA in black-box setup

USENIX Security'21, Security & Privacy (SP)'24

Al Model/Data Stealing from memory side-channel

IEEE-Security & Privacy (SP) – 2022

Thank You & Questions?

Deliang Fan

Director of *Efficient, Secure and Intelligent Computing* (ESIC) Laboratory School of Electrical, Computer and Energy Engineering Arizona State University, Tempe, AZ, USA

Email: dfan@asu.edu

https://faculty.engineering.asu.edu/dfan/

