Neural architecture search for in-memory computing-based deep learning accelerators

Olga Krestinskaya

King Abdullah University of Science and Technology, 23955, Saudi Arabia

Based on:

Olga Krestinskaya, Mohammed E. Fouda, Hadjer Benmeziane, Kaoutar El Maghraoui, Abu Sebastian, Wei D. Lu, Mario Lanza, Hai Li, Fadi Kurdahi, Suhaib A. Fahmy, Ahmed Eltawil, and Khaled N. Salama.

Nature Reviews Electrical Engineering (2024): 1-17.

Agenda

Introduction, motivation and software-hardware co-design

Motivation to improve hardware efficiency and challenges in selecting optimum design

Hardware-aware Neural Architecture Search (HW-NAS)

HW-NAS methods, algorithms, hardware cost estimation methods, HW-NAS frameworks for IMC

Future directions, open challenges and final thoughts

Roadmap of HW-NAS for IMC, open issues, HW-NAS and other optimization techniques, summary

Rapid Al development and Increasing Neural Network Complexity

Smart

cities

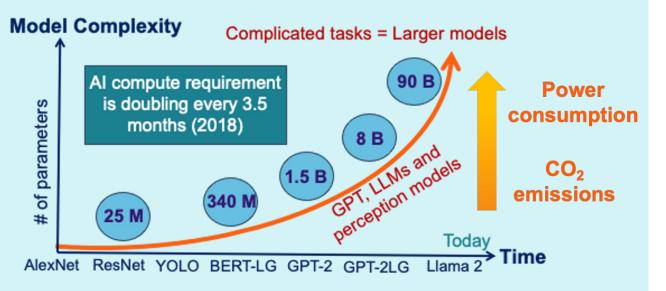
"Al everywhere" Vision and Self-driving Security

vehicles

language

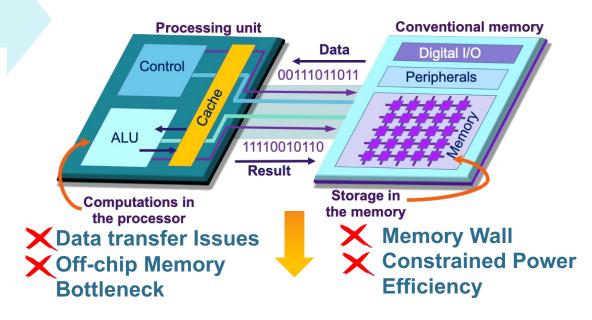
processing

Increasing complexity of neural networks

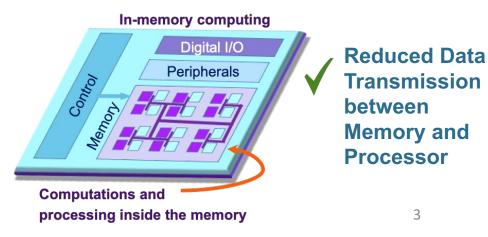


applications

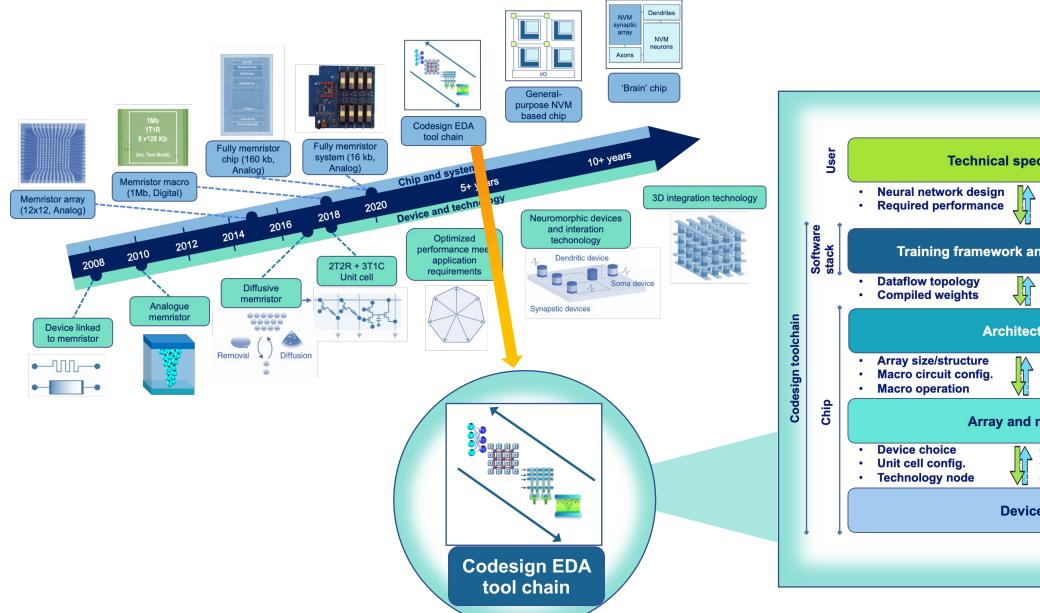
Traditional von Neumann Architecture:

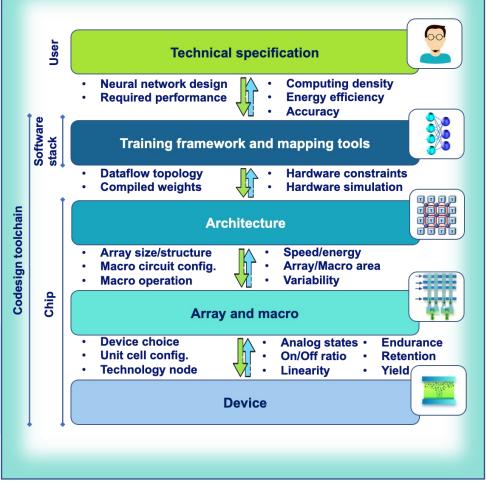


In-memory computing accelerator:



In-memory Computing Roadmap and Software-Hardware Co-design

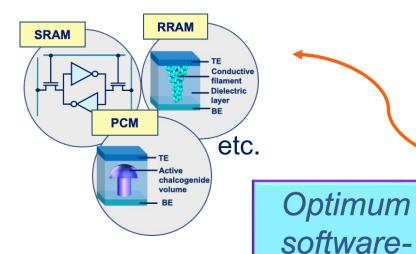




Software-Hardware Co-design for IMC Accelerators

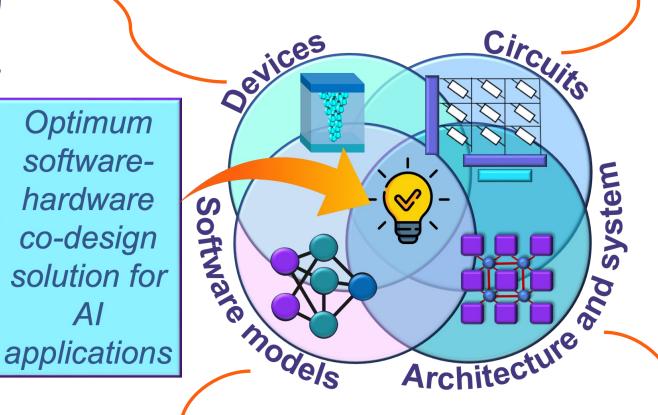
hardware

co-design

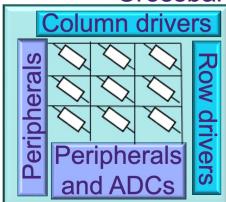


e.g. number of bits per cell

Neural network blocks, connections, layer sizes, etc.

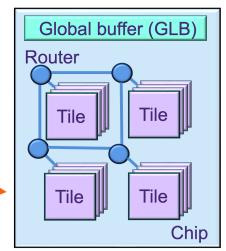


Crossbar

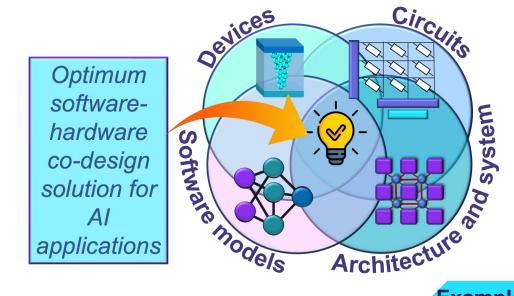


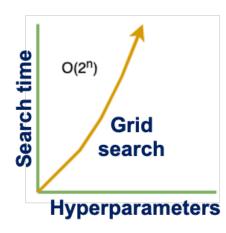
Size, ADCs per crossbar, etc.

Number of tiles, etc.



How to Select the Optimum Design?





Too many parameters to consider

Example: 8.5 * 10⁸⁵ possible combinations

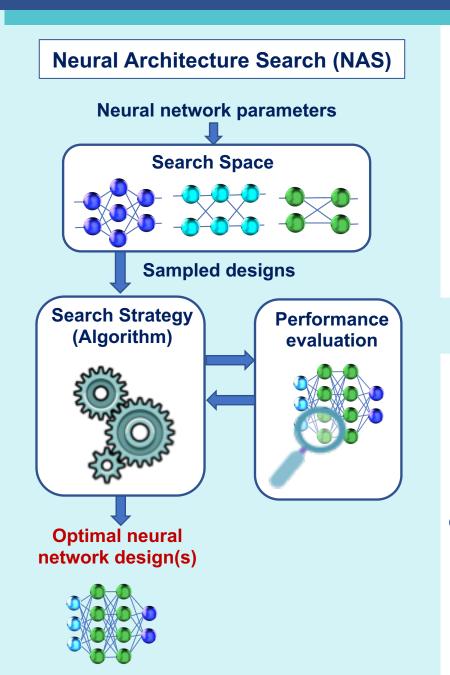
Manual optimization of parameters is infeasible, based on guessing (sometimes certain rules), and require a lot of human efforts

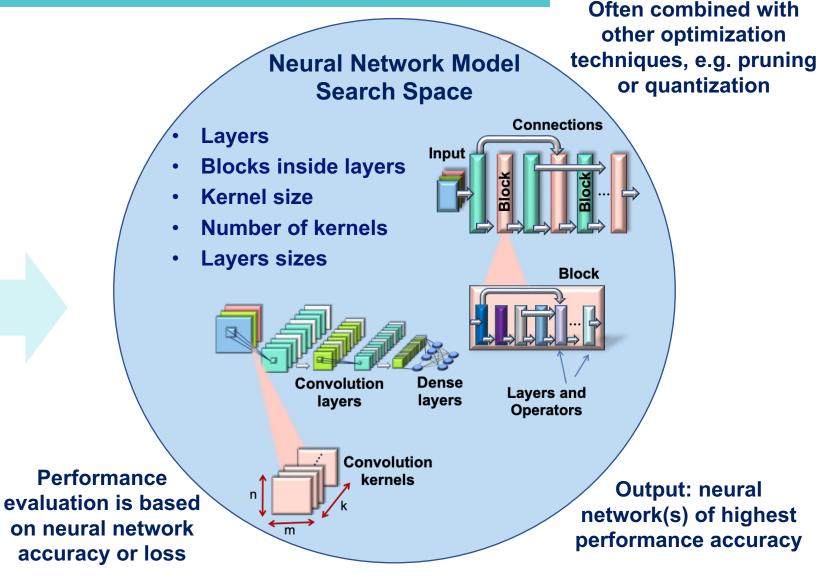
Grid search is slow and search time exponentially increases with number of hyperparameters to optimize

Increasing complexity and network size

One approach to achieving such optimization is through Hardware-aware Neural Architecture Search (HW-NAS).

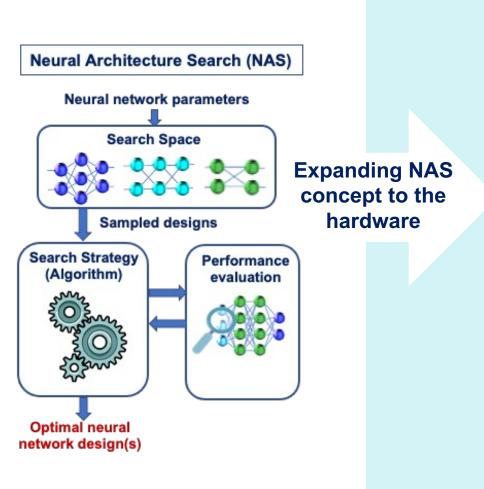
Neural Architecture Search from Software Perspective

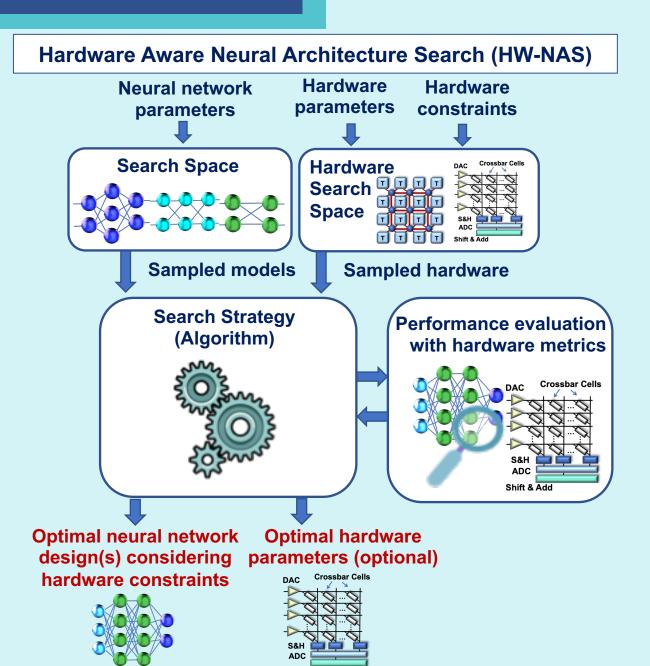




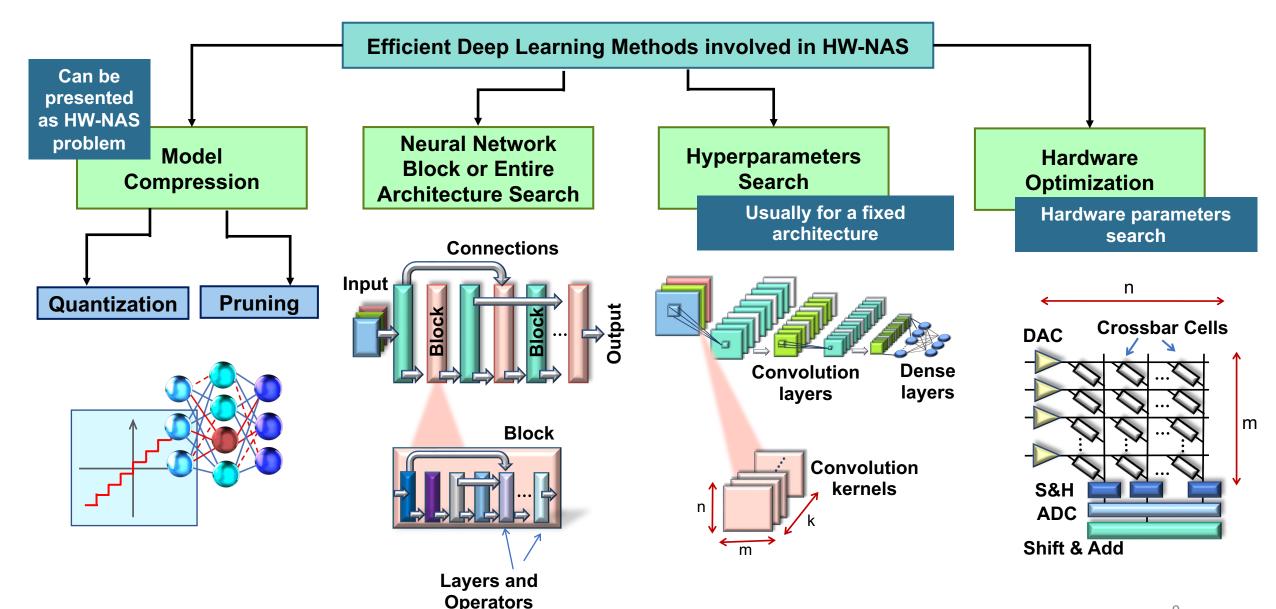
No consideration of hardware efficiency or considering only high-level metrics, e.g. FLOPs

Hardware-aware Neural Architecture Search



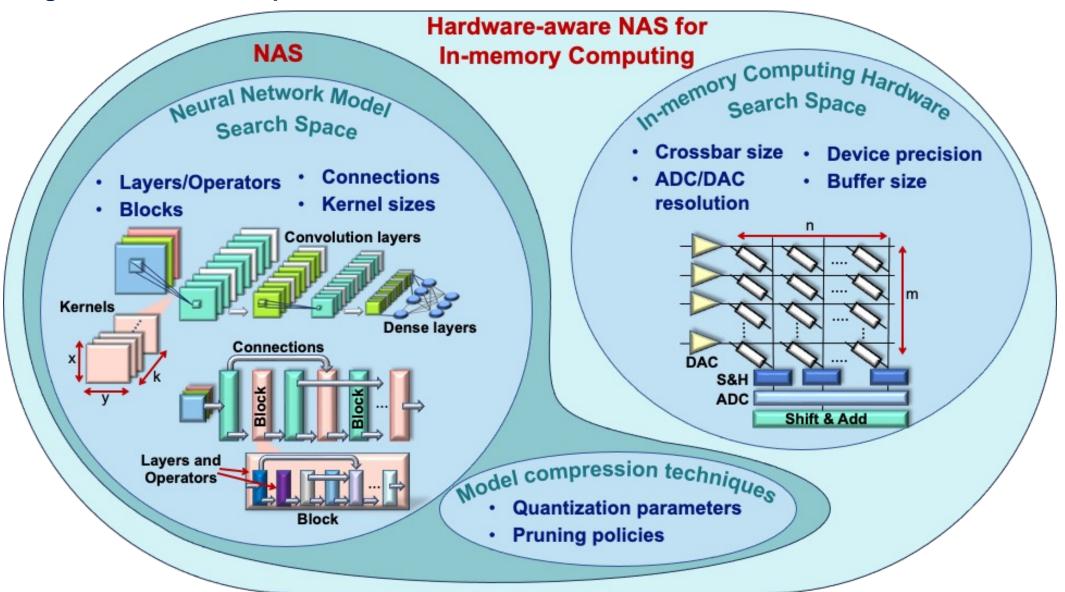


Hardware-Aware Neural Architecture Search

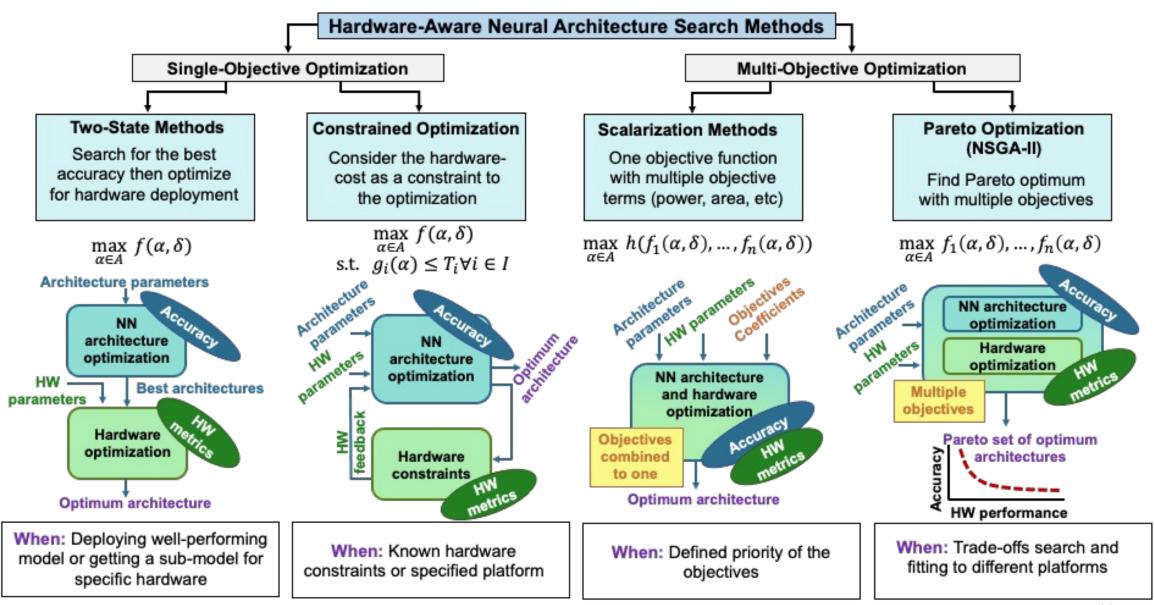


HW-NAS for In-Memory Computing: Search Space

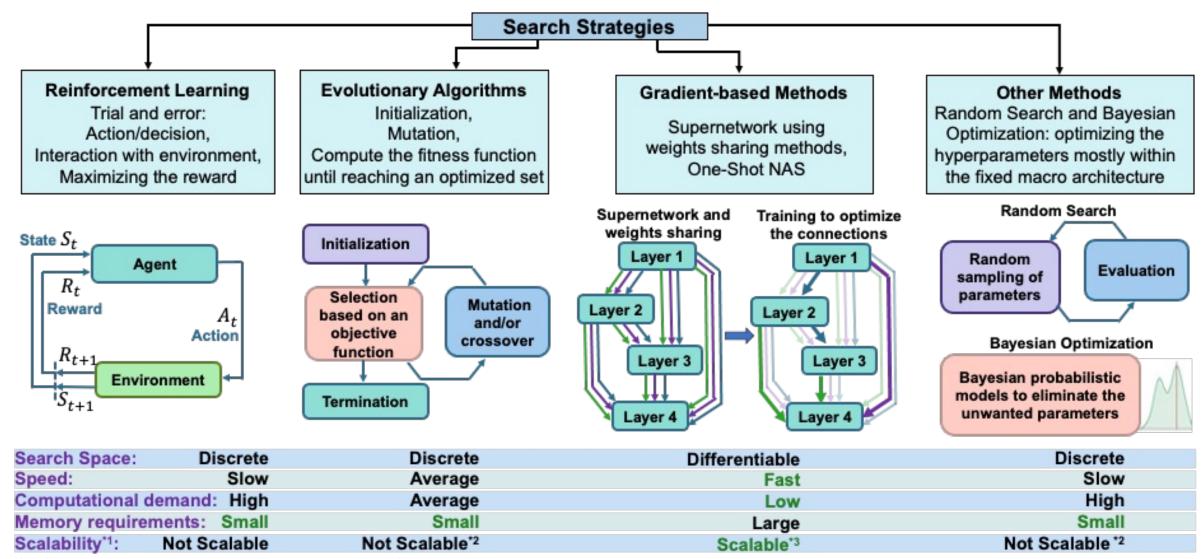
Expanding HW-NAS Search Space for IMC Architectures



HW-NAS Methods

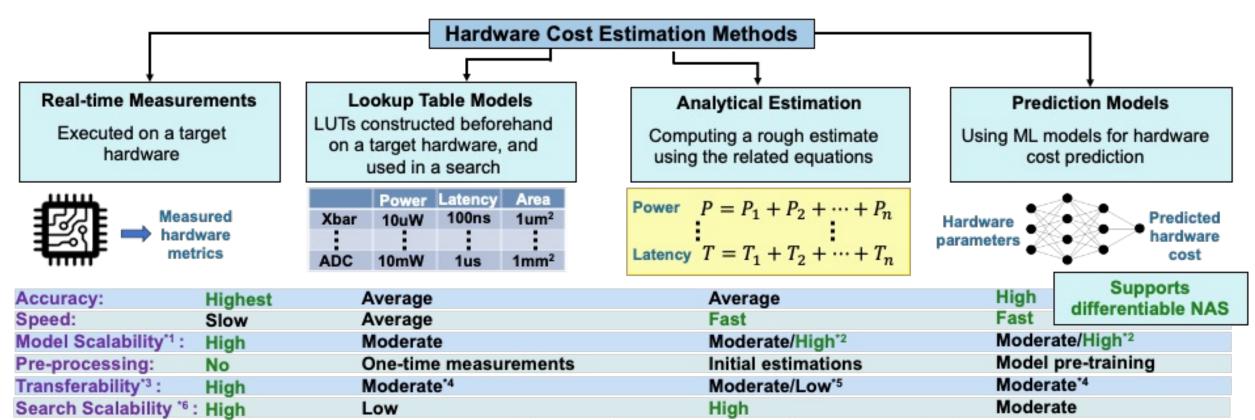


Search algorithms



^{11:} refers to time complexity increasing with a search space, 12: can be used with a supernetwork search space, 13: search time does not increase exponentially with a search space size

Hardware cost estimation methods



^{1:} across neural network models, 2: depends on how similar is a new model, 3: across different hardware platforms, 4: requires regeneration, 5: depends on the hardware similarity, 6: with increasing search space (number of hyperparameters in a search)

State-of-the-art HW-NAS Frameworks for IMC

	Quantization (search)	Pruning	HW- NAS	Architecture Search Space	Hardware Search Space	Hardware cost	Algorithm	Hardware non-idealities
AnalogNAS (2023)	3	8		# of blocks, channels, branches, kernel size	83	AlHWKit	EA	Variations, Cond. drift
NAS4RRAM (2021)	3	8		Layers, channels (residual blocks)	3	RRAM simulator	EA	Variations
FLASH (2021)	3	8		# of skip connections, cells, layers, channels	3	NeuroSim, BookSim	SHGO	3
NAX (2021)	3	8		Kernel size	Crossbar size	GENIEx	DS	Wire/sourse/sinl resistances
Gibbon (2022)		3	②	# of blocks, channels, groups, kernel size, bit-width	Crossbar size, ADC/ DAC/device precision	MNSIM	EA	Variations
NACIM (2020)	O	3		Architecture hyperparameters, bit-width (int./frac.)	Tile/buffer size, bandwidth	NeuroSim	RL	Variations
UAE (2021)		3		# of channels, filter size, bit- width (int./frac.)	€3	Analytical	RL	Variations, program. errors
CMQ (2022)		3	3	Quantization threshold, bit-width	3	MINT	DS	Variations
Mixed-precision quantization (2021)		3	8	Weight/inputs bit-width (int./frac.)	ADC precision	PUMAsim	RL	3
EGQ (2021)	•	3	8	Weight/activation bit-width	8	NeuroSim	GA	83
RaQU (2021)		3	3	Weight/kernel bit-width	8	Analytical	RL	3
ASBP (2021)	3		8	Bits of weights	8	Analytical	RL	3
Auto-prune (2021)	3		3	Weights (pruned unimportaint columns)	8	MNSIM	RL	33

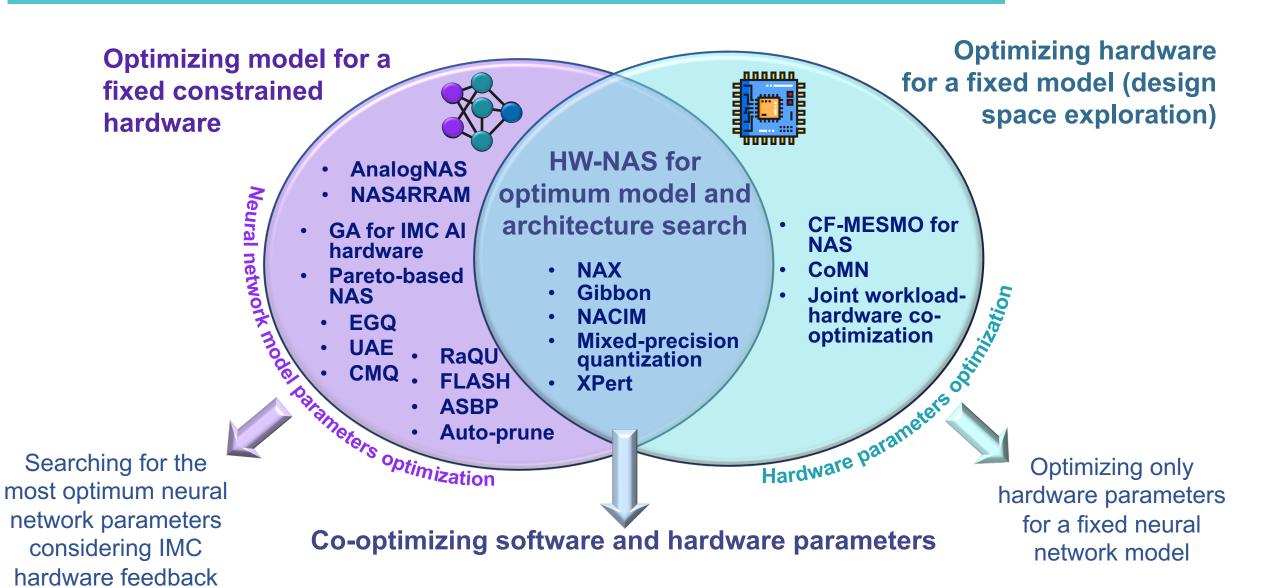
The latest frameworks (not included in the paper but worth mentioning):

XPert (2023)	Two-step co-optimziation of software and hardware parameters, including channel depth, ADC precision, input precision, etc.						
CoMN (2024)	Design space exploration for a large IMC hardware search space, including circuits and architecture parameters						
Joint Hardware-Workload Co-optimization (2024)	Design space exploration for a large IMC hardware search space to optimize IMC hardware for different workloads simultaneously						

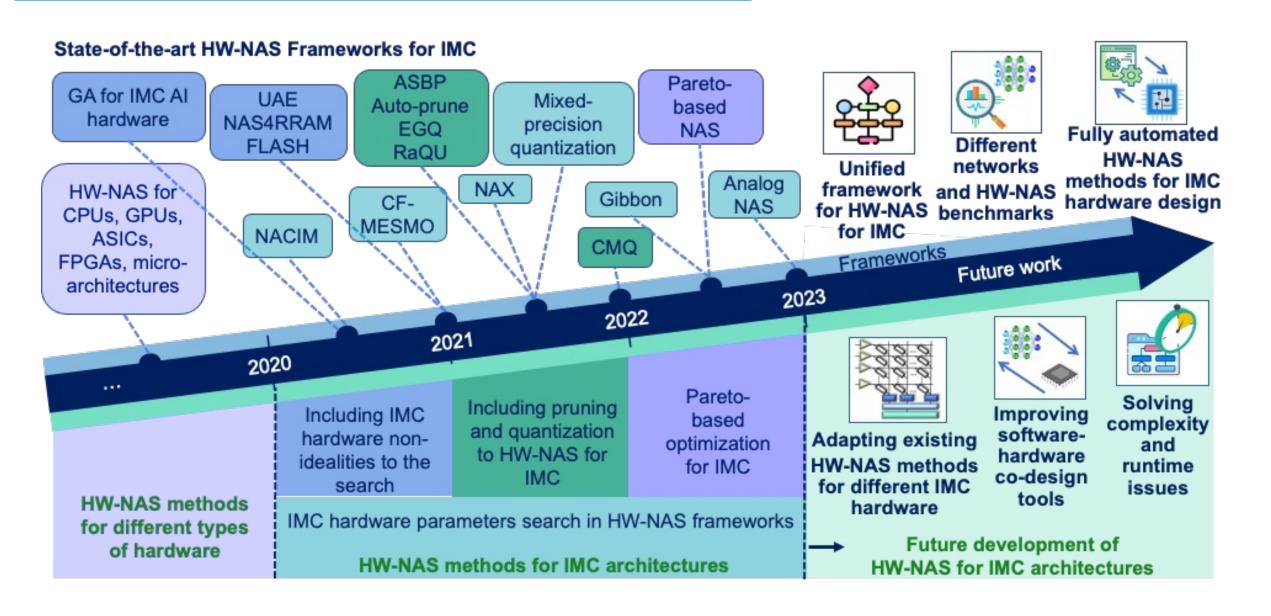
Limited hardware search space (only few hardware parameters)

Moitra, A., Bhattacharjee, et al. (2023, July). XPert: Peripheral Circuit & Neural Architecture Co-search for Area and Energy-efficient Xbar-based Computing. In 2023 60th ACM/IEEE Design Automation Conference (DAC) (pp. 1-6). IEEE. Han, L., Pan, et al. (2024). CoMN: Algorithm-Hardware Co-Design Platform for Non-Volatile Memory Based Convolutional Neural Network Accelerators. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. Krestinskaya, O., Fouda, M. E., Eltawil, A., & Salama, K. N. (2024). Towards Efficient IMC Accelerator Design Through Joint Hardware-Workload Co-optimization. arXiv preprint arXiv:2410.16759.

Taxonomy of HW-NAS frameworks for IMC applications



HW-NAS for IMC Applications Roadmap



Open Problems and Way Forward

Solving complexity and runtime issues

(search space size vs search time)

Including
hardware
non-idealities
mitigation
techniques
to NAS
framework

Expanding hardware and model search spaces, adding more applications

Creating HW-NAS benchmarks Adapting existing HW-NAS methods for different IMC hardware

Considering system-level challenges

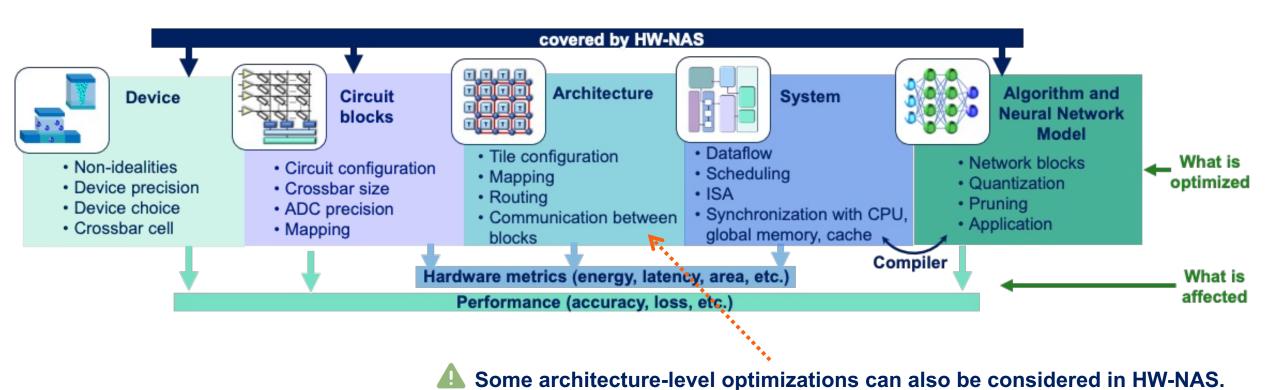
(dataflow optimization, scheduling,

etc.)

Unified framework incorporating neural network model and hardware search

Open Problems and Way Forward

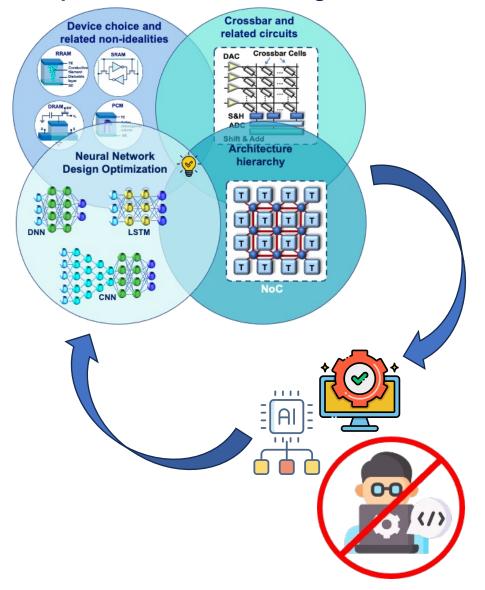
Neural network model and IMC hardware optimization covered by HW-NAS:



Combining HW-NAS with other optimization techniques for end-to-end IMC hardware optimization tool?

One more step forward

Optimum AI hardware design



Self-adapting Design Algorithms

Al-driven Design Tools

- Fully-automated NAS methods capable of constructing new deep learning operations and algorithms suitable for IMC with minimal human design efforts.
- Example from software: AutoML- Zero automatically searching for the complete machine learning algorithms (model, optimization procedure, etc with minimum restriction on the form or math operations).
- Reducing human intervention in the design.
- No pre-defined blocks.
- Adaptable to different tasks and constraints.
- IMC awareness open challenge.

Utilization of Al capabilities to improve and automate both algorithm and hardware design.

