

Hardware-Aware Quantization for Accurate Memristor-Based Neural Networks

Sumit Diware, Mohammad Amin Yaldagard & Rajendra Bishnoi

Computer Engineering

Faculty of Electrical Engineering, Mathematics & Computer Science, Delft University of Technology (TU-Delft), The Netherlands

19th May 2025

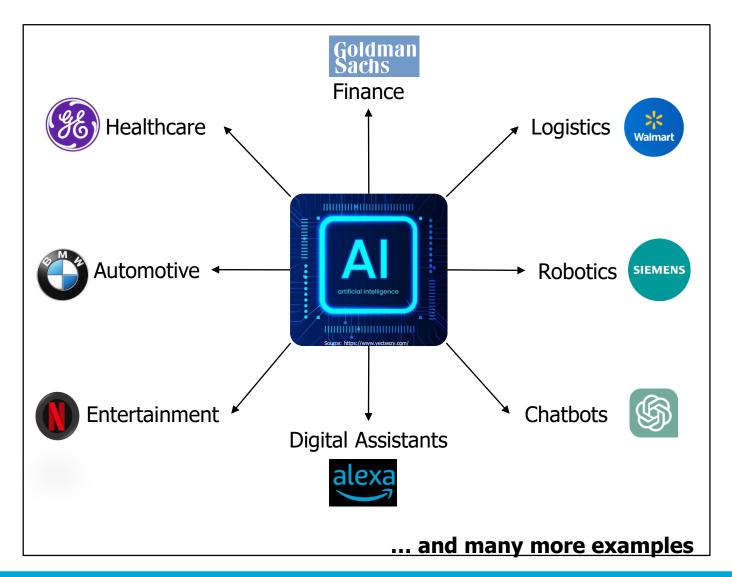
Email: S.S.Diware@tudelft.nl

- Introduction
- Computation-In-Memory (CIM) for edge-AI
- Challenge & related-works
- Proposed methodology
- Results
 - Simulation
 - Chip Prototype

Conclusions

Artificial Intelligence (AI)

Systems that can perform cognitive tasks



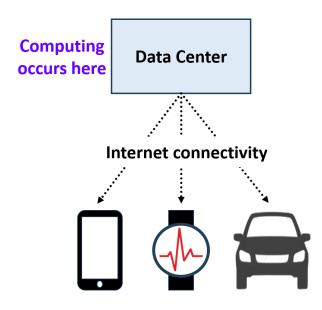
Technology and innovation report 2025

Al market is projected to reach \$4.8 trillion by 2033 – almost the size of Germany's economy

Source: https://unctad.org/publication/technology-and-innovation-report-2025

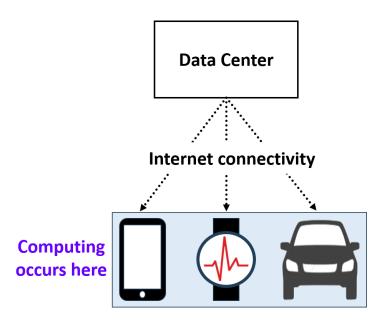
AI Computing Paradigms

Cloud-AI



- Fast response
- Low network costs
- Data privacy & security
- Service reliability

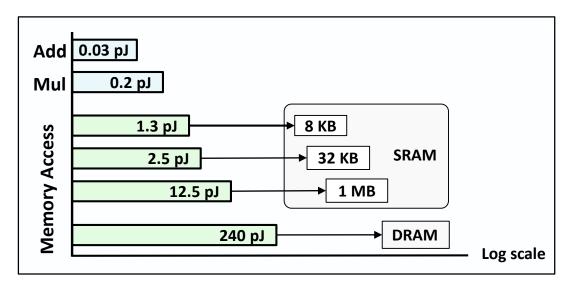
Edge-AI



Growing preference shift towards edge-AI

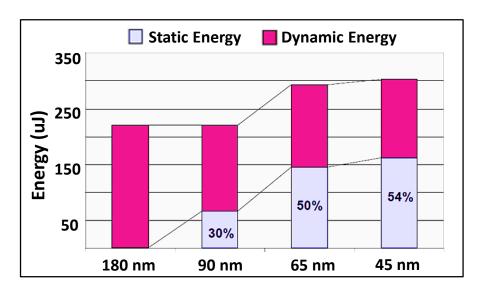
Edge-AI using Conventional Hardware

- The von Neumann architecture
 - Data transfer bottleneck



Energy for 8-bit arithmetic in 45 nm node [Meng-MNANO'2023]

- Conventional memory technologies
 - Standby energy & scalability issues



SRAM energy consumption trend [Goudarzi-HiPEAC'2008]

Conventional hardware is not suited for edge-AI

- Motivation
- Computation-In-Memory (CIM) for edge-AI
- Challenge & related-works
- Proposed methodology
- Results
 - Simulation
 - Chip Prototype

Conclusions

Computation-In-Memory (CIM)

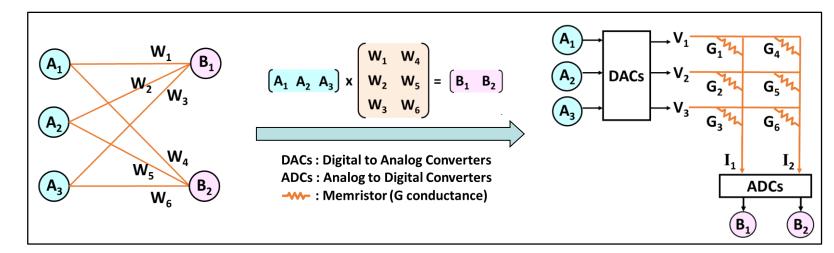
Emerging paradigm

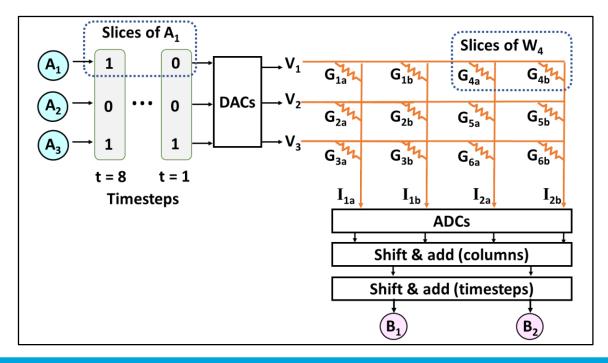
- In-place computations
- Emerging memory devices
 - Known as memristors

Key benefits

- Energy-efficiency
- Small area footprint
- Brain-like architecture

- Bit-slicing
 - ADC/DAC limitation
 - Memristor bits < weight bits

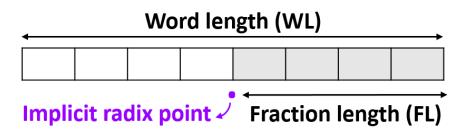




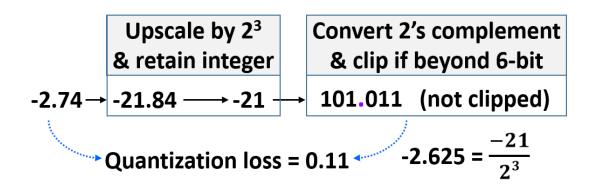
Quantization in CIM

- CIM typically uses fixed-point quantization
 - Fixed-point number = integer with implicit scaling factor
 - Further energy-savings due to integer post-processing

Fixed-point structure

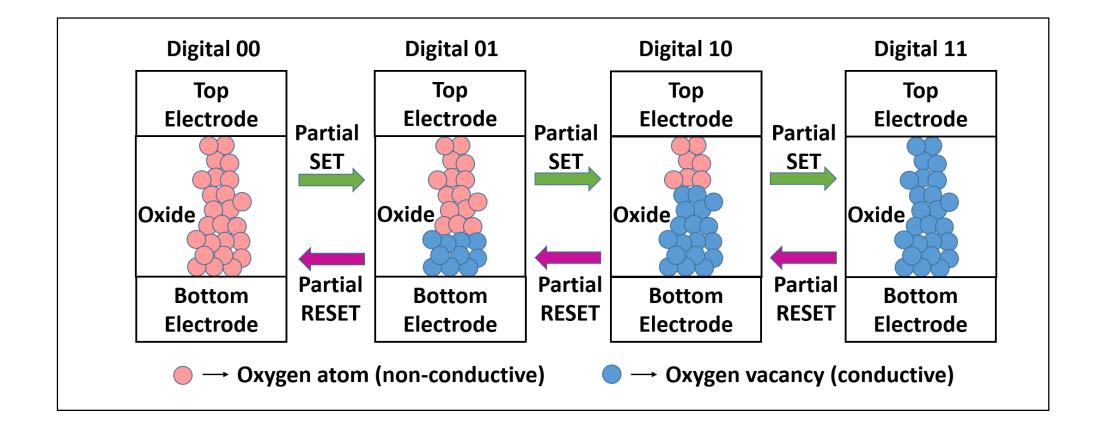


Quantization example (WL=6, FL=3)



Memristor Device Technology

- Resistive random access memory (RRAM)
 - Data stored as oxide conductance
 - Multi-bit storage capability

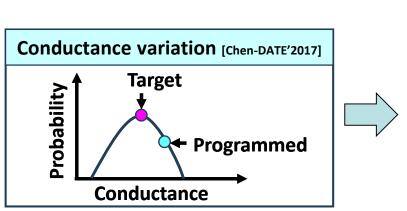


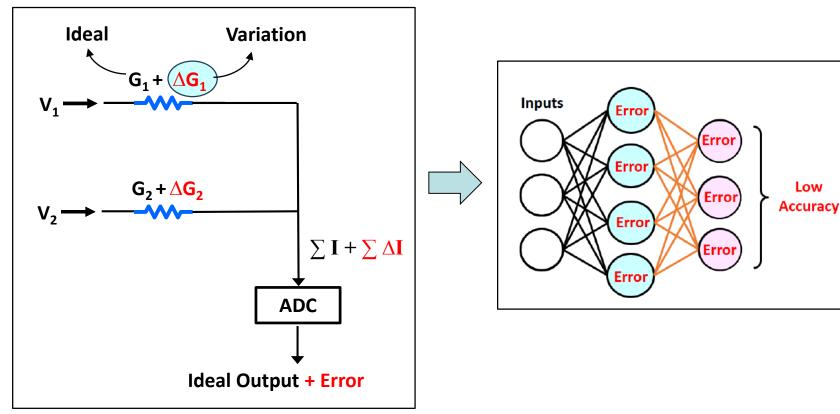
- Motivation
- Computation-In-Memory (CIM) for edge-AI
- Challenge & related works
- Proposed methodology
- Results
 - Simulation
 - Chip Prototype

Conclusions

Challenge: Conductance Variation

Deviation from ideal resistive behavior





Related Works

- On-chip training [Nandakumar-FrontiersNS'20, Li-NatureCom'2018]
 - Not scalable, energy and endurance issues
- Off-chip training [Charan-JXCDC'20, Jiang-TC'21, Antolini-JESTCS'23]
 - Not scalable, target error tolerance
- Characterization-based mapping [Song-TCAD'21, Chen-DATE'17]
 - Not scalable, restrictive
- Hardware compensation [He-ASPDAC'23, Chang-NSR'22, Milo-IRPS'21]
 - Hardware overhead

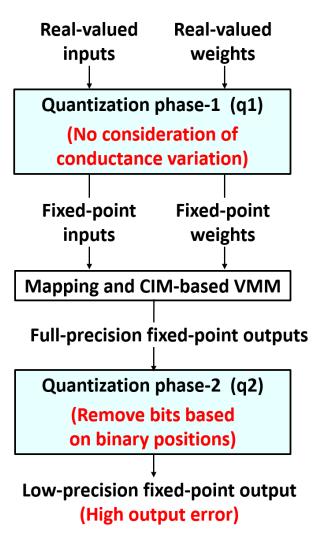
Not scalable, target error tolerance, incur hardware overhead

- Motivation
- Computation-In-Memory (CIM) for edge-AI
- Challenge & related works
- Proposed approach
- Results
 - Simulation
 - Chip Prototype

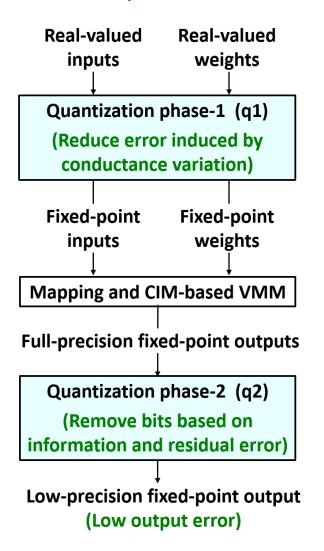
Conclusions

Overview

Conventional

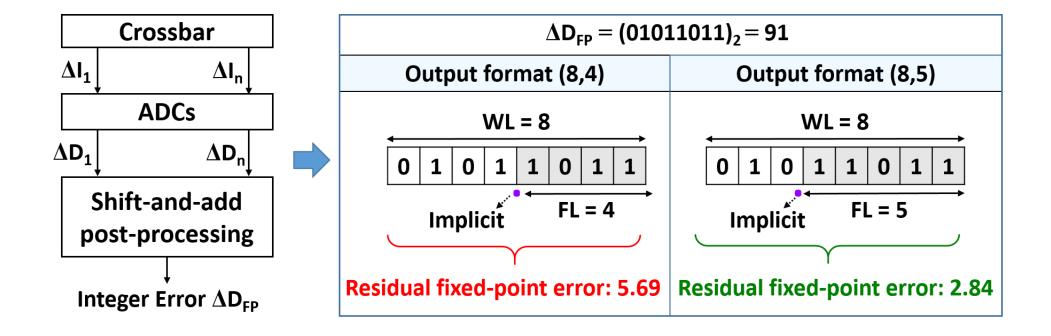


Proposed



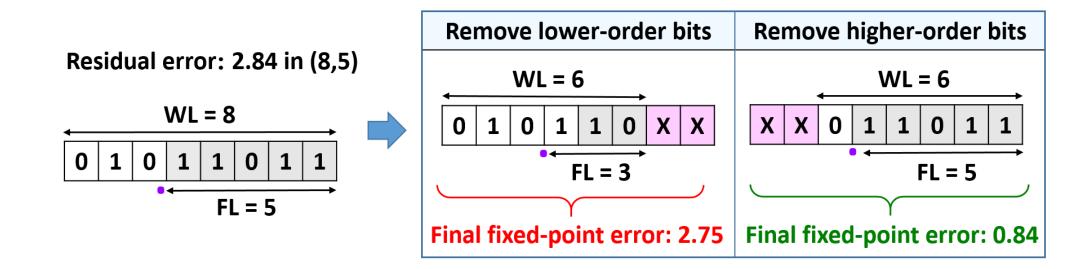
Quantization Phase-1

High output fraction length suppresses conductance variation-induced errors



Quantization Phase-2

- Residual error can persist after phase-1
- Discard bits with low information content but high error content
 - These may not always be lower order bits
 - Example: Higher order bits that just exist as sign extension



Quantization Algorithm and Hardware Design

Proposed quantization algorithm

- Constraints: architecture details and accuracy threshold
- Tunes the fraction length of weights
- Derives the quantization parameters
 - Phase-1: output fraction length
 - Phase-2: distribution of discarded higher and lower order bits

Hardware design considerations

- Phase-1: no hardware modifications
- Phase-2: configurable truncation logic
 - Simple registers and multiplexing logic
 - Can be adapted for any workload

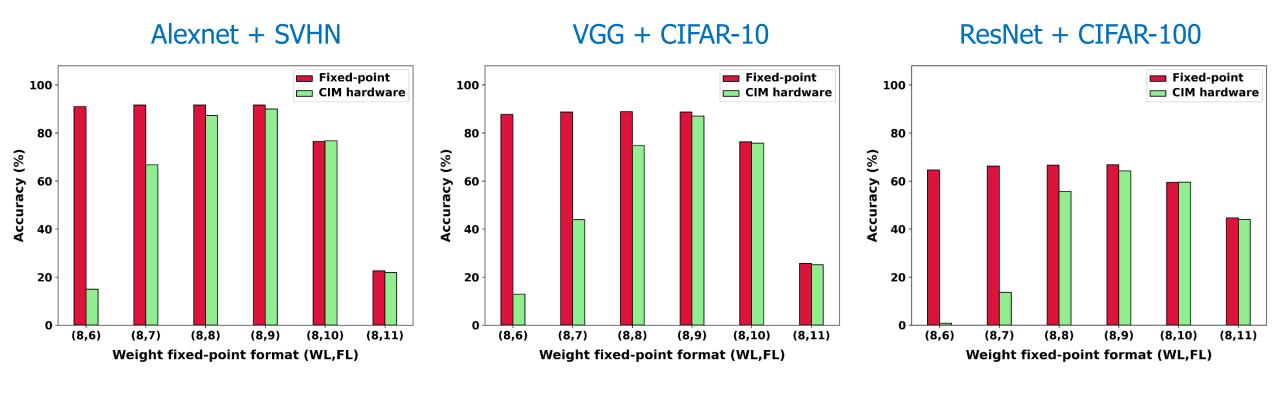
- Motivation
- Computation-In-Memory (CIM) for edge-AI
- Challenge & related works
- Proposed methodology
- Results
 - Simulation
 - Chip Prototype

Conclusions

Simulation: Setup

Parameters	Specification/Source	
CIM hardware simulation	 Architecture: [ISAAC-ISCA'16] 8-bit weights, 2-bit memristors Variation data: [Prakash-PSR'16] 	
Benchmarks	 Modified Alexnet + SVHN dataset Modified VGG + CIFAR-10 dataset Modified ResNet + CIFAR-100 dataset 	
Evaluation toolchain	 Software training: PyTorch Hardware inference: In-house CIM simulator ASIC synthesis: Cadence Genus (TSMC 40nm) 	

Simulation: Neural Network Accuracy



- FL > WL indicates leading implicit zeros in the fraction
- Hardware accuracy peaks at FL = 9 bits
 - FL increase 6 → 9 leads to reduced impact of errors
 - FL increase beyond 9 insufficient integer part precision

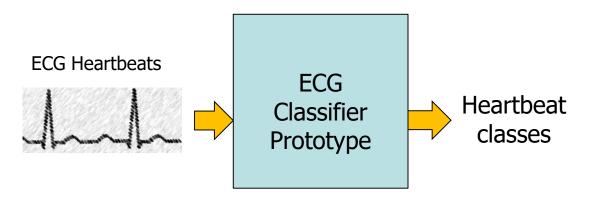
Simulation: Hardware Metrics

Metric (unit)	Conventional Approach [PANTHER-TC'20, PUMA-ASPLOS'19, ISAAC-ISCA'16]	Proposed Approach
SVHN hardware accuracy (%)	15.94	89.97
Energy (pJ)	3738	3782
Area (µm²)	21765	23137
Correct operations per unit energy (GOP/J)*	43.7	243.6

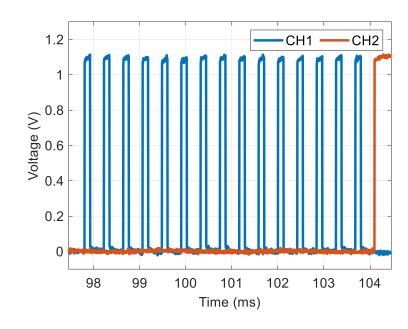
*Correct operations per unit energy =
$$\frac{\text{Accuracy} \times \text{Total operations}}{100 \times \text{Energy consumption}}$$

- Up to 5.6× correct operations per unit energy
- Overheads: 1.2% energy and 6.3% area

Chip Prototype



- TSMC 40nm technology
- 2.9 sq. mm. Si area
- 100MHz clock frequency
- 1.1V nominal voltage



- Motivation
- Computation-In-Memory (CIM) for edge-AI
- Challenge & related works
- Proposed methodology
- Results
 - Simulation
 - Chip Prototype

Conclusions

Conclusions

- Computation-in-Memory (CIM) for edge-AI
 - Efficiency beyond von-Neumann computing
- Memristor conductance variation
 - Induces computational errors, impacting the hardware accuracy
- Propose quantization methodology
 - Tunes the output fraction length to suppress the errors
 - Reduces the residual error by discarding bits with high error but less information
- Results
 - 5.6× correct operations per unit energy compared to the conventional approach
 - Deployed the proposed quantization in a chip prototype

Thank You!